
Louise E Purton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/762438/publications.pdf Version: 2024-02-01

LOUISE F PUDTON

#	Article	IF	CITATIONS
1	The characterization of distinct populations of murine skeletal cells that have different roles in B lymphopoiesis. Blood, 2021, 138, 304-317.	1.4	20
2	Regulation of murine B lymphopoiesis by stromal cells. Immunological Reviews, 2021, 302, 47-67.	6.0	2
3	From the niche to malignant hematopoiesis and back: reciprocal interactions between leukemia and the bone marrow microenvironment. JBMR Plus, 2021, 5, e10516.	2.7	9
4	Human, mouse, and dog bone marrow show similar mesenchymal stromal cells within a distinctive microenvironment. Experimental Hematology, 2021, 100, 41-51.	0.4	4
5	Sugar Rush: Supercharging Blood Cell Specification via the Inflammasome. Developmental Cell, 2020, 55, 109-111.	7.0	Ο
6	All-trans retinoic acid in non-promyelocytic acute myeloid leukemia: driver lesion dependent effects on leukemic stem cells. Cell Cycle, 2020, 19, 2573-2588.	2.6	10
7	Effects of chemotherapy agents used to treat pediatric acute lymphoblastic leukemia patients on bone parameters and longitudinal growth of juvenile mice. Experimental Hematology, 2020, 82, 1-7.	0.4	3
8	Loss of Parathyroid Hormone Receptor Signaling in Osteoprogenitors Is Associated With Accumulation of Multiple Hematopoietic Lineages in the Bone Marrow. Journal of Bone and Mineral Research, 2020, 37, 1321-1334.	2.8	3
9	A population of nonneuronal GFRα3-expressing cells in the bone marrow resembles nonmyelinating Schwann cells. Cell and Tissue Research, 2019, 378, 441-456.	2.9	6
10	Hemopoietic Cell Kinase amplification with Protein Tyrosine Phosphatase Receptor T depletion leads to polycythemia, aberrant marrow erythoid maturation, and splenomegaly. Scientific Reports, 2019, 9, 7050.	3.3	4
11	All-trans retinoic acid enhances, and a pan-RAR antagonist counteracts, the stem cell promoting activity of EVI1 in acute myeloid leukemia. Cell Death and Disease, 2019, 10, 944.	6.3	18
12	The haematopoietic stem cell niche: a new player in cardiovascular disease?. Cardiovascular Research, 2019, 115, 277-291.	3.8	14
13	Modeling human RNA spliceosome mutations in the mouse: not all mice were created equal. Experimental Hematology, 2019, 70, 10-23.	0.4	13
14	Mesenchymal lineage cells and their importance in B lymphocyte niches. Bone, 2019, 119, 42-56.	2.9	13
15	Imaging methods used to study mouse and human HSC niches: Current and emerging technologies. Bone, 2019, 119, 19-35.	2.9	27
16	Inhibition of Endosteal Vascular Niche Remodeling Rescues Hematopoietic Stem Cell Loss in AML. Cell Stem Cell, 2018, 22, 64-77.e6.	11.1	249
17	Extrinsic Regulation of Hematopoietic Stem Cells and Lymphocytes by Vitamin A. Current Stem Cell Reports, 2018, 4, 282-290.	1.6	1
18	mTORC1 plays an important role in osteoblastic regulation of B-lymphopoiesis. Scientific Reports, 2018, 8. 14501.	3.3	17

#	Article	IF	CITATIONS
19	Protagonist or antagonist? The complex roles of retinoids in the regulation of hematopoietic stem cells and their specification from pluripotent stem cells. Experimental Hematology, 2018, 65, 1-16.	0.4	7
20	Retinoic Acid Receptor Î ³ Activity in Mesenchymal Stem Cells Regulates Endochondral Bone, Angiogenesis, and B Lymphopoiesis. Journal of Bone and Mineral Research, 2018, 33, 2202-2213.	2.8	20
21	Srsf2 P95H initiates myeloid bias and myelodysplastic/myeloproliferative syndrome from hemopoietic stem cells. Blood, 2018, 132, 608-621.	1.4	45
22	Retinoic acid receptor signalling directly regulates osteoblast and adipocyte differentiation from mesenchymal progenitor cells. Experimental Cell Research, 2017, 350, 284-297.	2.6	39
23	Increased miR-155-5p and reduced miR-148a-3p contribute to the suppression of osteosarcoma cell death. Oncogene, 2016, 35, 5282-5294.	5.9	60
24	PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2306-15.	7.1	40
25	Adenosine-to-inosine RNA editing by ADAR1 is essential for normal murine erythropoiesis. Experimental Hematology, 2016, 44, 947-963.	0.4	52
26	T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments. Nature, 2016, 538, 518-522.	27.8	159
27	Arrested Hematopoiesis and Vascular Relaxation Defects in Mice with a Mutation in <i>Dhfr</i> . Molecular and Cellular Biology, 2016, 36, 1222-1236.	2.3	6
28	Retinoic Acid Receptor \hat{I}^3 Regulates B and T Lymphopoiesis via Nestin-Expressing Cells in the Bone Marrow and Thymic Microenvironments. Journal of Immunology, 2016, 196, 2132-2144.	0.8	16
29	The role of vitamin A and retinoic acid receptor signaling in post-natal maintenance of bone. Journal of Steroid Biochemistry and Molecular Biology, 2016, 155, 135-146.	2.5	53
30	Myelosuppressive Therapies Significantly Increase Pro-Inflammatory Cytokines and Directly Cause Bone Loss. Journal of Bone and Mineral Research, 2015, 30, 886-897.	2.8	35
31	Ciliary neurotrophic factor has intrinsic and extrinsic roles in regulating B cell differentiation and bone structure. Scientific Reports, 2015, 5, 15529.	3.3	14
32	EphB4 Expressing Stromal Cells Exhibit an Enhanced Capacity for Hematopoietic Stem Cell Maintenance. Stem Cells, 2015, 33, 2838-2849.	3.2	29
33	Src family kinases and their role in hematological malignancies. Leukemia and Lymphoma, 2015, 56, 577-586.	1.3	19
34	Wnt inhibitory factor 1 (WIF1) is a marker of osteoblastic differentiation stage and is not silenced by DNA methylation in osteosarcoma. Bone, 2015, 73, 223-232.	2.9	27
35	The DNA Helicase Recql4 Is Required for Normal Osteoblast Expansion and Osteosarcoma Formation. PLoS Genetics, 2015, 11, e1005160.	3.5	34
36	RARÎ ³ is a negative regulator of osteoclastogenesis. Journal of Steroid Biochemistry and Molecular Biology, 2015, 150, 46-53.	2.5	25

#	Article	IF	CITATIONS
37	Erythroidâ€extrinsic regulation of normal erythropoiesis by retinoic acid receptors. British Journal of Haematology, 2014, 164, 280-285.	2.5	17
38	Myeloma plasma cells alter the bone marrow microenvironment by stimulating the proliferation of mesenchymal stromal cells. Haematologica, 2014, 99, 163-171.	3.5	90
39	The Rothmund-Thomson syndrome helicase RECQL4 is essential for hematopoiesis. Journal of Clinical Investigation, 2014, 124, 3551-3565.	8.2	48
40	Deciphering Hematopoietic Stem Cells in Their Niches: A Critical Appraisal of Genetic Models, Lineage Tracing, and Imaging Strategies. Cell Stem Cell, 2013, 13, 520-533.	11.1	148
41	Modeling distinct osteosarcoma subtypes in vivo using Cre:lox and lineage-restricted transgenic shRNA. Bone, 2013, 55, 166-178.	2.9	65
42	ATRA and the specific RARα agonist, NRX195183, have opposing effects on the clonogenicity of pre-leukemic murine AML1-ETO bone marrow cells. Leukemia, 2013, 27, 1369-1380.	7.2	18
43	The granulocyte-colony stimulating factor receptor (G-CSFR) interacts with retinoic acid receptors (RARs) in the regulation of myeloid differentiation. Journal of Leukocyte Biology, 2013, 93, 235-243.	3.3	9
44	Tug of war in the haematopoietic stem cell niche: do myeloma plasma cells compete for the HSC niche?. Blood Cancer Journal, 2012, 2, e91-e91.	6.2	51
45	A Novel Population of Cells Expressing Both Hematopoietic and Mesenchymal Markers Is Present in the Normal Adult Bone Marrow and Is Augmented in a Murine Model of Marrow Fibrosis. American Journal of Pathology, 2012, 180, 811-818.	3.8	20
46	Effects of the bone marrow microenvironment on hematopoietic malignancy. Bone, 2011, 48, 115-120.	2.9	33
47	Taking HSCs Down a Notch in Leukemia. Cell Stem Cell, 2011, 8, 602-603.	11.1	1
48	Erythropoietin couples erythropoiesis, B-lymphopoiesis, and bone homeostasis within the bone marrow microenvironment. Blood, 2011, 117, 5631-5642.	1.4	123
49	A stressed niche not Wnted. Blood, 2011, 118, 2377-2378.	1.4	1
50	Defining the hematopoietic stem cell niche: The chicken and the egg conundrum. Journal of Cellular Biochemistry, 2011, 112, 1486-1490.	2.6	8
51	Gsα enhances commitment of mesenchymal progenitors to the osteoblast lineage but restrains osteoblast differentiation in mice. Journal of Clinical Investigation, 2011, 121, 3492-3504.	8.2	91
52	MicroRNA miR-125a controls hematopoietic stem cell number. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14229-14234.	7.1	330
53	What is the true nature of the osteoblastic hematopoietic stem cell niche?. Trends in Endocrinology and Metabolism, 2009, 20, 303-309.	7.1	89
54	The Role of p202 in Regulating Hematopoietic Cell Proliferation and Differentiation. Journal of Interferon and Cytokine Research, 2008, 28, 5-11.	1.2	11

#	Article	IF	CITATIONS
55	Osteoblastic regulation of B lymphopoiesis is mediated by G _s α-dependent signaling pathways. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16976-16981.	7.1	222
56	Mutations in the neutral sphingomyelinase gene SMPD3 implicate the ceramide pathway in human leukemias. Blood, 2008, 111, 4716-4722.	1.4	89
57	Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. Journal of Clinical Investigation, 2008, 118, 491-504.	8.2	202
58	Roles of Retinoids and Retinoic Acid Receptors in the Regulation of Hematopoietic Stem Cell Self-Renewal and Differentiation. PPAR Research, 2007, 2007, 1-7.	2.4	28
59	Granulocyte Colony-Stimulating Factor and an RAR?? Specific Agonist, VTP195183, Synergize to Enhance the Mobilization of Hematopoietic Progenitor Cells. Transplantation, 2007, 83, 375-384.	1.0	21
60	Limiting Factors in Murine Hematopoietic Stem Cell Assays. Cell Stem Cell, 2007, 1, 263-270.	11.1	246
61	A Microenvironment-Induced Myeloproliferative Syndrome Caused by Retinoic Acid Receptor \hat{I}^3 Deficiency. Cell, 2007, 129, 1097-1110.	28.9	490
62	Rb Regulates Interactions between Hematopoietic Stem Cells and Their BoneÂMarrow Microenvironment. Cell, 2007, 129, 1081-1095.	28.9	380
63	Osteoclasts eat stem cells out of house and home. Nature Medicine, 2006, 12, 610-611.	30.7	19
64	RARÎ ³ is critical for maintaining a balance between hematopoietic stem cell self-renewal and differentiation. Journal of Experimental Medicine, 2006, 203, 1283-1293.	8.5	181
65	RARÎ ³ is critical for maintaining a balance between hematopoietic stem cell self-renewal and differentiation. Journal of Cell Biology, 2006, 173, i9-i9.	5.2	0
66	Negative cell-cycle regulators cooperatively control self-renewal and differentiation of haematopoietic stem cells. Nature Cell Biology, 2005, 7, 172-178.	10.3	105
67	Contrasting effects of P-selectin and E-selectin on the differentiation of murine hematopoietic progenitor cells. Experimental Hematology, 2005, 33, 232-242.	0.4	25
68	Cell Division and Hematopoietic Stem Cells: Not Always Exhausting. Cell Cycle, 2005, 4, 893-896.	2.6	15
69	Osteopenia in Siah1a Mutant Mice. Journal of Biological Chemistry, 2004, 279, 29583-29588.	3.4	11
70	Identification of the molecular requirements for an RARα-mediated cell cycle arrest during granulocytic differentiation. Blood, 2004, 103, 1286-1295.	1.4	36
71	Generation and Analysis of Siah2 Mutant Mice. Molecular and Cellular Biology, 2003, 23, 9150-9161.	2.3	69
72	An Oxysterol-Binding Protein Family Identified in the Mouse. DNA and Cell Biology, 2002, 21, 571-580.	1.9	56

#	Article	IF	CITATIONS
73	Multipotent hematopoietic cell lines derived from C/EBPα(â^'/â^') knockout mice display granulocyte macrophage–colony-stimulating factor, granulocyte– colony-stimulating factor, and retinoic acid–induced granulocytic differentiation. Blood, 2001, 98, 2382-2388.	1.4	30
74	All-transRetinoic Acid Facilitates Oncoretrovirus-Mediated Transduction of Hematopoietic Repopulating Stem Cells. Journal of Hematotherapy and Stem Cell Research, 2001, 10, 815-825.	1.8	2
75	All-trans retinoic acid enhances the long-term repopulating activity of cultured hematopoietic stem cells. Blood, 2000, 95, 470-477.	1.4	124
76	All-Trans Retinoic Acid Delays the Differentiation of Primitive Hematopoietic Precursors (linâ^'c-kit+Sca-1+) While Enhancing the Terminal Maturation of Committed Granulocyte/Monocyte Progenitors. Blood, 1999, 94, 483-495.	1.4	107
77	All-Trans Retinoic Acid Delays the Differentiation of Primitive Hematopoietic Precursors (linâ~'c-kit+Sca-1+) While Enhancing the Terminal Maturation of Committed Granulocyte/Monocyte Progenitors. Blood, 1999, 94, 483-495.	1.4	6
78	Monocytes are the likely candidate â€~stromal' cell in G-CSF-mobilized peripheral blood. Bone Marrow Transplantation, 1998, 21, 1075-1076.	2.4	15
79	The Notch Ligand, Jagged-1, Influences the Development of Primitive Hematopoietic Precursor Cells. Blood, 1998, 91, 4084-4091.	1.4	312
80	The Notch Ligand, Jagged-1, Influences the Development of Primitive Hematopoietic Precursor Cells. Blood, 1998, 91, 4084-4091.	1.4	12
81	The Role of Retinoic Acid Receptors in Myeloid Differentiation. , 0, , 149-161.		Ο