
Thomas G P Grünewald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7622094/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ewing sarcoma. Nature Reviews Disease Primers, 2018, 4, 5.	30.5	500
2	Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries. Nature Genetics, 2017, 49, 1408-1413.	21.4	331
3	Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity. Nature, 2019, 566, 403-406.	27.8	326
4	Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nature Communications, 2017, 8, 15267.	12.8	297
5	Sarcoma classification by DNA methylation profiling. Nature Communications, 2021, 12, 498.	12.8	237
6	Translational Activation of HIF1α by YB-1 Promotes Sarcoma Metastasis. Cancer Cell, 2015, 27, 682-697.	16.8	226
7	MYBL2 (B-Myb): a central regulator of cell proliferation, cell survival and differentiation involved in tumorigenesis. Cell Death and Disease, 2017, 8, e2895-e2895.	6.3	226
8	YB-1 regulates stress granule formation and tumor progression by translationally activating G3BP1. Journal of Cell Biology, 2015, 208, 913-929.	5.2	224
9	Breast Cancer-Derived Lung Metastases Show Increased Pyruvate Carboxylase-Dependent Anaplerosis. Cell Reports, 2016, 17, 837-848.	6.4	203
10	Chimeric EWSR1-FLI1 regulates the Ewing sarcoma susceptibility gene EGR2 via a GGAA microsatellite. Nature Genetics, 2015, 47, 1073-1078.	21.4	157
11	Sarcoma treatment in the era of molecular medicine. EMBO Molecular Medicine, 2020, 12, e11131.	6.9	154
12	Single-cell transcriptomic analyses provide insights into the developmental origins of neuroblastoma. Nature Genetics, 2021, 53, 683-693.	21.4	128
13	Lysophosphatidic acid (LPA) signalling in cell migration and cancer invasion: A focussed review and analysis of LPA receptor gene expression on the basis of more than 1700 cancer microarrays. Biology of the Cell, 2013, 105, 317-333.	2.0	123
14	Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1): a master regulator of mRNA translation involved in tumorigenesis. Oncogene, 2016, 35, 4675-4688.	5.9	116
15	STEAP1 Is Associated with the Invasive and Oxidative Stress Phenotype of Ewing Tumors. Molecular Cancer Research, 2012, 10, 52-65.	3.4	109
16	Overexpression of LASP-1 mediates migration and proliferation of human ovarian cancer cells and influences zyxin localisation. British Journal of Cancer, 2007, 96, 296-305.	6.4	107
17	Silencing of LASP-1 influences zyxin localization, inhibits proliferation and reduces migration in breast cancer cells. Experimental Cell Research, 2006, 312, 974-982.	2.6	103
18	Ewing Sarcoma—Diagnosis, Treatment, Clinical Challenges and Future Perspectives. Journal of Clinical Medicine, 2021, 10, 1685.	2.4	101

THOMAS G P GRüNEWALD

#	Article	IF	CITATIONS
19	Molecular characteristics and therapeutic vulnerabilities across paediatric solid tumours. Nature Reviews Cancer, 2019, 19, 420-438.	28.4	98
20	Transcriptional Programs Define Intratumoral Heterogeneity of Ewing Sarcoma at Single-Cell Resolution. Cell Reports, 2020, 30, 1767-1779.e6.	6.4	96
21	Epithelial-to-Mesenchymal and Mesenchymal-to-Epithelial Transition in Mesenchymal Tumors: A Paradox in Sarcomas?. Cancer Research, 2017, 77, 4556-4561.	0.9	91
22	Endogenous TCR promotes in vivo persistence of CD19-CAR-T cells compared to a CRISPR/Cas9-mediated TCR knockout CAR. Blood, 2020, 136, 1407-1418.	1.4	91
23	The STEAP protein family: Versatile oxidoreductases and targets for cancer immunotherapy with overlapping and distinct cellular functions. Biology of the Cell, 2012, 104, 641-657.	2.0	82
24	Tumourâ€derived exosomes: TinyÂenvelopesÂfor big stories. Biology of the Cell, 2015, 107, 287-305.	2.0	77
25	PHGDH heterogeneity potentiates cancerÂcell dissemination and metastasis. Nature, 2022, 605, 747-753.	27.8	77
26	An update on the LIM and SH3 domain protein 1 (LASP1): a versatile structural, signaling, and biomarker protein. Oncotarget, 2015, 6, 26-42.	1.8	75
27	Super enhancers define regulatory subtypes and cell identity in neuroblastoma. Nature Cancer, 2021, 2, 114-128.	13.2	73
28	The LIM and SH3 domain protein family: structural proteins or signal transducers or both?. Molecular Cancer, 2008, 7, 31.	19.2	71
29	Nuclear localization and cytosolic overexpression of LASP-1 correlates with tumor size and nodal-positivity of human breast carcinoma. BMC Cancer, 2007, 7, 198.	2.6	69
30	Robust diagnosis of Ewing sarcoma by immunohistochemical detection of super-enhancer-driven EWSR1-ETS targets. Oncotarget, 2018, 9, 1587-1601.	1.8	66
31	InÂVivo Evidence for Serine Biosynthesis-Defined Sensitivity of Lung Metastasis, but Not of Primary Breast Tumors, to mTORC1 Inhibition. Molecular Cell, 2021, 81, 386-397.e7.	9.7	63
32	Role of LIM and SH3 Protein 1 (LASP1) in the Metastatic Dissemination of Medulloblastoma. Cancer Research, 2010, 70, 8003-8014.	0.9	62
33	First report of effective and feasible treatment of multifocal lymphangiomatosis (Gorham–Stout) with bevacizumab in a child. Annals of Oncology, 2010, 21, 1733-1734.	1.2	61
34	Loss of tumor suppressor mir-203 mediates overexpression of LIM and SH3 Protein 1 (LASP1) in high-risk prostate cancer thereby increasing cell proliferation and migration. Oncotarget, 2014, 5, 4144-4153.	1.8	61
35	First identification of Ewing's sarcomaâ€derived extracellular vesicles and exploration of their biological and potential diagnostic implications. Biology of the Cell, 2013, 105, 289-303.	2.0	59
36	PRC1: Linking Cytokinesis, Chromosomal Instability, and Cancer Evolution. Trends in Cancer, 2018, 4, 59-73.	7.4	59

Thomas G P Grünewald

#	Article	IF	CITATIONS
37	DKK2 Mediates Osteolysis, Invasiveness, and Metastatic Spread in Ewing Sarcoma. Cancer Research, 2013, 73, 967-977.	0.9	56
38	The LPA1/ZEB1/miR-21-activation pathway regulates metastasis in basal breast cancer. Oncotarget, 2015, 6, 20604-20620.	1.8	56
39	Nuclear localisation of LASP-1 correlates with poor long-term survival in female breast cancer. British Journal of Cancer, 2010, 102, 1645-1653.	6.4	55
40	The second European interdisciplinary Ewing sarcoma research summit - A joint effort to deconstructing the multiple layers of a complex disease. Oncotarget, 2016, 7, 8613-8624.	1.8	55
41	Gâ€Protein coupled receptor 64 promotes invasiveness and metastasis in Ewing sarcomas through <scp>PGF</scp> and <scp>MMP1</scp> . Journal of Pathology, 2013, 230, 70-81.	4.5	53
42	Cooperation of cancer drivers with regulatory germline variants shapes clinical outcomes. Nature Communications, 2019, 10, 4128.	12.8	51
43	Genome-wide association study identifies multiple new loci associated with Ewing sarcoma susceptibility. Nature Communications, 2018, 9, 3184.	12.8	50
44	DNA methylation profiling distinguishes Ewing-like sarcoma with EWSR1–NFATc2 fusion from Ewing sarcoma. Journal of Cancer Research and Clinical Oncology, 2019, 145, 1273-1281.	2.5	50
45	Cell Adhesion and Transcriptional Activity — Defining the Role of the Novel Protooncogene LPP. Translational Oncology, 2009, 2, 107-116.	3.7	48
46	High STEAP1 expression is associated with improved outcome of Ewing's sarcoma patients. Annals of Oncology, 2012, 23, 2185-2190.	1.2	43
47	Fat Induces Glucose Metabolism in Nontransformed Liver Cells and Promotes Liver Tumorigenesis. Cancer Research, 2021, 81, 1988-2001.	0.9	43
48	Anti-oxidative stress response genes: bioinformatic analysis of their expression and relevance in multiple cancers. Oncotarget, 2013, 4, 2577-2590.	1.8	41
49	mTOR Signaling and SREBP Activity Increase FADS2 Expression and Can Activate Sapienate Biosynthesis. Cell Reports, 2020, 31, 107806.	6.4	41
50	Mesenchymal stromal cells for treatment of steroid-refractory GvHD: a review of the literature and two pediatric cases. International Archive of Medicine, 2011, 4, 27.	1.2	38
51	STAG Mutations in Cancer. Trends in Cancer, 2019, 5, 506-520.	7.4	38
52	PBX3 Is Part of an EMT Regulatory Network and Indicates Poor Outcome in Colorectal Cancer. Clinical Cancer Research, 2018, 24, 1974-1986.	7.0	37
53	Defining the role of TRIP6 in cell physiology and cancer. Biology of the Cell, 2011, 103, 573-591.	2.0	36
54	Oncogenic hijacking of a developmental transcription factor evokes vulnerability toward oxidative stress in Ewing sarcoma. Nature Communications, 2020, 11, 2423.	12.8	35

THOMAS G P GRüNEWALD

#	Article	IF	CITATIONS
55	Unraveling Ewing Sarcoma Tumorigenesis Originating from Patient-Derived Mesenchymal Stem Cells. Cancer Research, 2021, 81, 4994-5006.	0.9	35
56	Sclerosing Epithelioid Fibrosarcoma of the Bone: A Case Report of High Resistance to Chemotherapy and a Survey of the Literature. Sarcoma, 2010, 2010, 1-5.	1.3	34
57	A comparative view on the expression patterns of PD-L1 and PD-1 in soft tissue sarcomas. Cancer Immunology, Immunotherapy, 2020, 69, 1353-1362.	4.2	34
58	Understanding tumor heterogeneity as functional compartments - superorganisms revisited. Journal of Translational Medicine, 2011, 9, 79.	4.4	33
59	The Zyxinâ€related protein thyroid receptor interacting protein 6 (TRIP6) is overexpressed in Ewing's sarcoma and promotes migration, invasion and cell growth. Biology of the Cell, 2013, 105, 535-547.	2.0	31
60	Targeting the undruggable: exploiting neomorphic features of fusion oncoproteins in childhood sarcomas for innovative therapies. Cancer and Metastasis Reviews, 2019, 38, 625-642.	5.9	31
61	Pappalysin-1 T cell receptor transgenic allo-restricted T cells kill Ewing sarcoma <i>in vitro</i> and <i>in vivo</i> . Oncolmmunology, 2017, 6, e1273301.	4.6	30
62	EWS-FL11-mediated suppression of the RAS-antagonist Sprouty 1 (SPRY1) confers aggressiveness to Ewing sarcoma. Oncogene, 2017, 36, 766-776.	5.9	29
63	DNA methylation-based profiling of uterine neoplasms: a novel tool to improve gynecologic cancer diagnostics. Journal of Cancer Research and Clinical Oncology, 2020, 146, 97-104.	2.5	29
64	Perifosine inhibits growth of human experimental endometrial cancers by blockade of AKT phosphorylation. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2008, 141, 64-69.	1.1	28
65	Transgenic antigen-specific, HLA-A*02:01-allo-restricted cytotoxic T cells recognize tumor-associated target antigen STEAP1 with high specificity. Oncolmmunology, 2016, 5, e1175795.	4.6	25
66	Integrative gene network and functional analyses identify a prognostically relevant key regulator of metastasis in Ewing sarcoma. Molecular Cancer, 2022, 21, 1.	19.2	25
67	Translational evidence for RRM2 as a prognostic biomarker and therapeutic target in Ewing sarcoma. Molecular Cancer, 2021, 20, 97.	19.2	24
68	Acute stress enhances the expression of neuroprotection- and neurogenesis-associated genes in the hippocampus of a mouse restraint model. Oncotarget, 2016, 7, 8455-8465.	1.8	24
69	Gene expression and immunohistochemical analyses identify SOX2 as major risk factor for overall survival and relapse in Ewing sarcoma patients. EBioMedicine, 2019, 47, 156-162.	6.1	23
70	Targeting the CALCB/RAMP1 axis inhibits growth of Ewing sarcoma. Cell Death and Disease, 2019, 10, 116.	6.3	23
71	Allogeneic stem cell transplantation for patients with advanced rhabdomyosarcoma: a retrospective assessment. British Journal of Cancer, 2013, 109, 2523-2532.	6.4	22
72	Ewing sarcoma partial regression without GvHD by chondromodulin-I/HLA-A*02:01-specific allorestricted T cell receptor transgenic T cells. OncoImmunology, 2017, 6, e1312239.	4.6	21

#	Article	IF	CITATIONS
73	MHC Class I-Restricted TCR-Transgenic CD4+ T Cells Against STEAP1 Mediate Local Tumor Control of Ewing Sarcoma In Vivo. Cells, 2020, 9, 1581.	4.1	21
74	Human HLA-A*02:01/CHM1+ allo-restricted T cell receptor transgenic CD8+ T Cells specifically inhibit Ewing sarcoma growth <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2016, 7, 43267-43280.	1.8	21
75	MondoA is highly overexpressed in acute lymphoblastic leukemia cells and modulates their metabolism, differentiation and survival. Leukemia Research, 2012, 36, 1185-1192.	0.8	20
76	Are EWSR1-NFATc2-positive sarcomas really Ewing sarcomas?. Modern Pathology, 2018, 31, 997-999.	5.5	20
77	Sequence-dependent cross-resistance of combined radiotherapy plus BRAFV600E inhibition in melanoma. European Journal of Cancer, 2019, 109, 137-153.	2.8	20
78	Hippo pathway effectors YAP1/TAZ induce an <i>EWS–FLI1</i> â€opposing gene signature and associate with disease progression in Ewing sarcoma. Journal of Pathology, 2020, 250, 374-386.	4.5	19
79	Bone marrow involvement identifies a subgroup of advanced Ewing sarcoma patients with fatal outcome irrespective of therapy in contrast to curable patients with multiple bone metastases but unaffected marrow. Oncotarget, 2016, 7, 70959-70968.	1.8	19
80	LASP1 is a novel BCR-ABL substrate and a phosphorylation-dependent binding partner of CRKL in chronic myeloid leukemia. Oncotarget, 2014, 5, 5257-5271.	1.8	19
81	First report of ectopic ACTH syndrome and PTHrP-induced hypercalcemia due to a hepatoblastoma in a child. European Journal of Endocrinology, 2010, 162, 813-818.	3.7	17
82	MRD response in a refractory paediatric T-ALL patient through anti-programmed cell death 1 (PD-1) Ab treatment associated with induction of fatal GvHD. Bone Marrow Transplantation, 2017, 52, 1221-1224.	2.4	16
83	Systematic identification of cancer-specific MHC-binding peptides with RAVEN. Oncolmmunology, 2018, 7, e1481558.	4.6	16
84	High Specificity of BCL11B and GLG1 for EWSR1-FLI1 and EWSR1-ERG Positive Ewing Sarcoma. Cancers, 2020, 12, 644.	3.7	16
85	Targeted Therapeutics in Treatment of Children and Young Adults with Solid Tumors: an Expert Survey and Review of the Literature. Klinische Padiatrie, 2012, 224, 124-131.	0.6	15
86	Hepatitis B virus large surface protein is priming for hepatocellular carcinoma development via induction of cytokinesis failure. Journal of Pathology, 2019, 247, 6-8.	4.5	15
87	Oncogenic chimeric transcription factors drive tumor-specific transcription, processing, and translation of silent genomic regions. Molecular Cell, 2022, 82, 2458-2471.e9.	9.7	14
88	Integrative clinical transcriptome analysis reveals <i>TMPRSS2â€ERG</i> dependency of prognostic biomarkers in prostate adenocarcinoma. International Journal of Cancer, 2020, 146, 2036-2046.	5.1	13
89	Focal adhesion kinase confers proâ€migratory and antiapoptotic properties and is a potential therapeutic target in Ewing sarcoma. Molecular Oncology, 2020, 14, 248-260.	4.6	12
90	Cooperation between somatic mutations and germline susceptibility variants in tumorigenesis – a dangerous liaison. Molecular and Cellular Oncology, 2016, 3, e1086853.	0.7	11

THOMAS G P GRüNEWALD

#	Article	IF	CITATIONS
91	Therapeutic targeting of the PLK1-PRC1-axis triggers cell death in genomically silent childhood cancer. Nature Communications, 2021, 12, 5356.	12.8	11
92	LASP1, a Newly Identified Melanocytic Protein with a Possible Role in Melanin Release, but Not in Melanoma Progression. PLoS ONE, 2015, 10, e0129219.	2.5	10
93	Functional genomics identifies AMPD2 as a new prognostic marker for undifferentiated pleomorphic sarcoma. International Journal of Cancer, 2019, 144, 859-867.	5.1	10
94	Safety of Alternating Ganciclovir and Foscarnet Maintenance Therapy in Human Immunodeficiency Virus (HIV)-related Cytomegalovirus Infections. An Open-labeled Pilot Study. Scandinavian Journal of Infectious Diseases, 1994, 26, 49-54.	1.5	9
95	Pan-Cancer Analysis of Mitochondria Chaperone-Client Co-Expression Reveals Chaperone Functional Partitioning. Cancers, 2020, 12, 825.	3.7	9
96	Lysosome-associated membrane glycoprotein 1 predicts fratricide amongst T cell receptor transgenic CD8+ T cells directed against tumor-associated antigens. Oncotarget, 2016, 7, 56584-56597.	1.8	8
97	Leukemia escape in immune desert: intraocular relapse of pediatric pro-B-ALL during systemic control by CD19-CAR T cells. , 2020, 8, e001052.		7
98	MondoA drives malignancy in B-ALL through enhanced adaptation to metabolic stress. Blood, 2022, 139, 1184-1197.	1.4	7
99	The DNA-polymorphism rs849142 is associated with skin toxicity induced by targeted anti-EGFR therapy using cetuximab. Oncotarget, 2018, 9, 30279-30288.	1.8	6
100	Interaction between somatic mutations and germline variants contributes to clinical heterogeneity in cancer. Molecular and Cellular Oncology, 2020, 7, 1682924.	0.7	6
101	Low-frequency variation near common germline susceptibility loci are associated with risk of Ewing sarcoma. PLoS ONE, 2020, 15, e0237792.	2.5	6
102	Eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1) expression in glioblastoma is driven by ETS1- and MYBL2-dependent transcriptional activation. Cell Death Discovery, 2022, 8, 91.	4.7	6
103	Oncofusion-driven de novo enhancer assembly promotes malignancy in Ewing sarcoma via aberrant expression of the stereociliary protein LOXHD1. Cell Reports, 2022, 39, 110971.	6.4	6
104	Functional genomic analysis of epithelioid sarcoma reveals distinct proximal and distal subtype biology. Clinical and Translational Medicine, 2022, 12, .	4.0	6
105	Next steps in Ewing sarcoma (epi-)genomics. Future Oncology, 2017, 13, 1207-1211.	2.4	5
106	(Immuno)histological Analysis of Ewing Sarcoma. Methods in Molecular Biology, 2021, 2226, 49-64.	0.9	5
107	Next steps in preventing Ewing sarcoma progression. Future Oncology, 2016, 12, 1-4.	2.4	4
108	Expression of the EWSR1-FLI1 fusion oncogene in pancreas cells drives pancreatic atrophy and lipomatosis. Pancreatology, 2020, 20, 1673-1681.	1.1	4

#	Article	IF	CITATIONS
109	The Transcription Factor FEZF1, a Direct Target of EWSR1-FLI1 in Ewing Sarcoma Cells, Regulates the Expression of Neural-Specific Genes. Cancers, 2021, 13, 5668.	3.7	4
110	SOX6: a double-edged sword for Ewing sarcoma. Molecular and Cellular Oncology, 2020, 7, 1783081.	0.7	3
111	EIF4EBP1 is transcriptionally upregulated by MYCN and associates with poor prognosis in neuroblastoma. Cell Death Discovery, 2022, 8, 157.	4.7	3
112	Editorial: Biology-Driven Targeted Therapy of Pediatric Soft-Tissue and Bone Tumors: Current Opportunities and Future Challenges. Frontiers in Oncology, 2016, 6, 39.	2.8	2
113	Germline Variation and Somatic Alterations in Ewing Sarcoma. Methods in Molecular Biology, 2021, 2226, 3-14.	0.9	2
114	Human Leukocyte Antigen Distribution in German Caucasians with Advanced Ewing's Sarcoma. Klinische Padiatrie, 2012, 224, 353-358.	0.6	1
115	Abstract 2462: MondoA mediatesin vivoaggressiveness of common ALL and may serve as a T-cell immunotherapy target. , 2016, , .		1
116	Abstract 1227: Oncofusion drivende novoenhancer assembly promotes malignancy in Ewing sarcomaviaaberrant expression of the stereociliary protein LOXHD1. , 2021, , .		0
117	Molecular aspects of Ewing's sarcomas. , 2022, , 617-630.		0
118	Oncofusion-Driven <i>de novo</i> Enhancer Assembly Promotes Malignancy in Ewing Sarcoma <i>via</i> Aberrant Expression of the Stereociliary Protein LOXHD1. SSRN Electronic Journal, 0, , .	0.4	0
119	Abstract 1421: Overexpression of the pro-glycolytic transcription factor MondoA enhances malignant potential of ALLin vivo. , 2014, , .		0
120	Abstract A10: Functional characterization of Ewing's sarcoma susceptibility loci. , 2014, , .		0
121	Stem cell rescue from irradiation of multiple tumor sites combined with high-dose chemotherapy, followed by reduced intensity conditioning and allogeneic stem cell transplantation in patients with advanced pediatric sarcomas: Preliminary results of the MetaEICESS 2007 protocol Journal of Clinical Oncology, 2015, 33, 10525-10525.	1.6	Ο
122	Abstract 973: A long noncoding RNA-regulating enhancer links Ewing sarcoma susceptibility to stress response. , 2016, , .		0
123	Abstract 3757: Ewing Sarcoma regression by Allo-MHC/Chm1 specific T cells without GVHD. , 2017, , .		0
124	Abstract 692: Pappalysin-1 is a suitable target for T cell receptor transgenic T cells to kill Ewing sarcomain vivoandin vitro. , 2017, , .		0
125	Abstract A13: Genome-wide association study identifies multiple new loci associated with Ewing sarcoma susceptibility. , 2018, , .		0
126	Clinical Evidence on the Interaction Between MLK4, KRAS and Microsatellite Instability to Determine the Prognosis of Early-Stage Colorectal Carcinoma. Cellular Physiology and Biochemistry, 2019, 53, 820-831.	1.6	0

#	Article	IF	CITATIONS
127	Tissue Preservation and FFPE Samples: Optimized Nucleic Acids Isolation in Ewing Sarcoma. Methods in Molecular Biology, 2021, 2226, 27-38.	0.9	0
128	Title is missing!. , 2020, 15, e0237792.		0
129	Title is missing!. , 2020, 15, e0237792.		0
130	Title is missing!. , 2020, 15, e0237792.		0
131	Title is missing!. , 2020, 15, e0237792.		0