BÄjlint MészÃjros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7621475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The IntAct database: efficient access to fine-grained molecular interaction data. Nucleic Acids Research, 2022, 50, D648-D653.	6.5	89
2	DisProt in 2022: improved quality and accessibility of protein intrinsic disorder annotation. Nucleic Acids Research, 2022, 50, D480-D487.	6.5	117
3	ECO: the Evidence and Conclusion Ontology, an update for 2022. Nucleic Acids Research, 2022, 50, D1515-D1521.	6.5	21
4	The Eukaryotic Linear Motif resource: 2022 release. Nucleic Acids Research, 2022, 50, D497-D508.	6.5	144
5	PSINDB: the postsynaptic protein–protein interaction database. Database: the Journal of Biological Databases and Curation, 2022, 2022, .	1.4	3
6	Short linear motif candidates in the cell entry system used by SARS-CoV-2 and their potential therapeutic implications. Science Signaling, 2021, 14, .	1.6	61
7	Computational resources for identifying and describing proteins driving liquid–liquid phase separation. Briefings in Bioinformatics, 2021, 22, .	3.2	40
8	Mutations of Intrinsically Disordered Protein Regions Can Drive Cancer but Lack Therapeutic Strategies. Biomolecules, 2021, 11, 381.	1.8	26
9	PhaSePro: the database of proteins driving liquid–liquid phase separation. Nucleic Acids Research, 2020, 48, D360-D367.	6.5	100
10	DisProt: intrinsic protein disorder annotation in 2020. Nucleic Acids Research, 2020, 48, D269-D276.	6.5	141
11	Distribution of disease-causing germline mutations in coiled-coils implies an important role of their N-terminal region. Scientific Reports, 2020, 10, 17333.	1.6	4
12	A guide to regulation of the formation of biomolecular condensates. FEBS Journal, 2020, 287, 1924-1935.	2.2	48
13	Sequential, Structural and FunctionalÂProperties of Protein Complexes Are Defined by How Folding and Binding Intertwine. Journal of Molecular Biology, 2019, 431, 4408-4428.	2.0	12
14	Large‣cale Analysis of Redox‣ensitive Conditionally Disordered Protein Regions Reveals Their Widespread Nature and Key Roles in High‣evel Eukaryotic Processes. Proteomics, 2019, 19, e1800070.	1.3	17
15	Sequence and Structure Properties Uncover the Natural Classification of Protein Complexes Formed by Intrinsically Disordered Proteins via Mutual Synergistic Folding. International Journal of Molecular Sciences, 2019, 20, 5460.	1.8	3
16	Bioinformatical Approaches to Unstructured/Disordered Proteins and Their Complexes. Springer Series on Bio- and Neurosystems, 2019, , 561-596.	0.2	0
17	An intrinsically disordered proteins community for ELIXIR. F1000Research, 2019, 8, 1753.	0.8	12
18	DIBS: a repository of disordered binding sites mediating interactions with ordered proteins.	1.8	72

^b Bioinformatics, 2018, 34, 535-537.

BÄilint MÄ©szÄiros

#	Article	IF	CITATIONS
19	Structural Principles Governing Disease-Causing Germline Mutations. Journal of Molecular Biology, 2018, 430, 4955-4970.	2.0	9
20	IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Research, 2018, 46, W329-W337.	6.5	1,080
21	MobiDB 3.0: more annotations for intrinsic disorder, conformational diversity and interactions in proteins. Nucleic Acids Research, 2018, 46, D471-D476.	6.5	190
22	Degrons in cancer. Science Signaling, 2017, 10, .	1.6	100
23	MFIB: a repository of protein complexes with mutual folding induced by binding. Bioinformatics, 2017, 33, 3682-3684.	1.8	61
24	Systematic analysis of somatic mutations driving cancer: uncovering functional protein regions in disease development. Biology Direct, 2016, 11, 23.	1.9	15
25	Systematic discovery of linear binding motifs targeting an ancient protein interaction surface on <scp>MAP</scp> kinases. Molecular Systems Biology, 2015, 11, 837.	3.2	60
26	A word of caution about biological inference – Revisiting cysteine covalent state predictions. FEBS Open Bio, 2014, 4, 310-314.	1.0	2
27	Bioinformatical Approaches to Unstructured/Disordered Proteins and Their Interactions. Springer Series in Bio-/neuroinformatics, 2014, , 525-556.	0.1	1
28	ls there a biological cost of protein disorder? Analysis of cancer-associated mutations. Molecular BioSystems, 2012, 8, 296-307.	2.9	43
29	Disordered Binding Regions and Linear Motifs—Bridging the Gap between Two Models of Molecular Recognition. PLoS ONE, 2012, 7, e46829.	1.1	60
30	The expanding view of protein–protein interactions: complexes involving intrinsically disordered proteins. Physical Biology, 2011, 8, 035003.	0.8	55
31	Proteins with Complex Architecture as Potential Targets for Drug Design: A Case Study of Mycobacterium tuberculosis. PLoS Computational Biology, 2011, 7, e1002118.	1.5	21
32	Bioinformatical approaches to characterize intrinsically disordered/unstructured proteins. Briefings in Bioinformatics, 2010, 11, 225-243.	3.2	107
33	ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics, 2009, 25, 2745-2746.	1.8	527
34	Prediction of Protein Binding Regions in Disordered Proteins. PLoS Computational Biology, 2009, 5, e1000376.	1.5	523
35	Assessing Conservation of Disordered Regions in Proteins. The Open Proteomics Journal, 2008, 1, 46-53.	0.4	15
36	Molecular Principles of the Interactions of Disordered Proteins. Journal of Molecular Biology, 2007, 372, 549-561.	2.0	242

3