
## **Richard Moriggl**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7621245/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Stat5 Is Required for IL-2-Induced Cell Cycle Progression of Peripheral T Cells. Immunity, 1999, 10, 249-259.                                                                                                         | 6.6 | 530       |
| 2  | Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood, 2007, 109, 4368-4375.                                                                                                                            | 0.6 | 488       |
| 3  | Persistent STAT3 Activation in Colon Cancer Is Associated with Enhanced Cell Proliferation and Tumor Growth. Neoplasia, 2005, 7, 545-555.                                                                             | 2.3 | 344       |
| 4  | Autocrine PDGFR signaling promotes mammary cancer metastasis. Journal of Clinical Investigation, 2006, 116, 1561-1570.                                                                                                | 3.9 | 307       |
| 5  | Deletion of the Carboxyl-Terminal Transactivation Domain of MGF-Stat5 Results in Sustained DNA<br>Binding and a Dominant Negative Phenotype. Molecular and Cellular Biology, 1996, 16, 5691-5700.                     | 1.1 | 262       |
| 6  | A Kinase-Independent Function of CDK6 Links the Cell Cycle to Tumor Angiogenesis. Cancer Cell, 2013, 24, 167-181.                                                                                                     | 7.7 | 244       |
| 7  | Identification of mcl-1 as a BCR/ABL-dependent target in chronic myeloid leukemia (CML): evidence for cooperative antileukemic effects of imatinib and mcl-1 antisense oligonucleotides. Blood, 2005, 105, 3303-3311. | 0.6 | 226       |
| 8  | Bone homeostasis in growth hormone receptor–null mice is restored by IGF-I but independent of<br>Stat5. Journal of Clinical Investigation, 2000, 106, 1095-1103.                                                      | 3.9 | 225       |
| 9  | Macrophages and neutrophils are the targets for immune suppression by glucocorticoids in contact allergy. Journal of Clinical Investigation, 2007, 117, 1381-1390.                                                    | 3.9 | 225       |
| 10 | Stat5 tetramer formation is associated with leukemogenesis. Cancer Cell, 2005, 7, 87-99.                                                                                                                              | 7.7 | 213       |
| 11 | Stat5 is indispensable for the maintenance of <i>bcr/abl</i> â€positive leukaemia. EMBO Molecular<br>Medicine, 2010, 2, 98-110.                                                                                       | 3.3 | 206       |
| 12 | Clarifying the role of Stat5 in lymphoid development and Abelson-induced transformation. Blood, 2006, 107, 4898-4906.                                                                                                 | 0.6 | 192       |
| 13 | Epidermal Growth Factor Receptor Signaling Synergizes with Hedgehog/GLI in Oncogenic<br>Transformation via Activation of the MEK/ERK/JUN Pathway. Cancer Research, 2009, 69, 1284-1292.                               | 0.4 | 189       |
| 14 | JAK-STAT signaling in cancer: From cytokines to non-coding genome. Cytokine, 2016, 87, 26-36.                                                                                                                         | 1.4 | 186       |
| 15 | Stat5a/b contribute to interleukin 7–induced B-cell precursor expansion, but abl- andbcr/abl-induced<br>transformation are independent of Stat5. Blood, 2000, 96, 2277-2283.                                          | 0.6 | 184       |
| 16 | Cancer-associated fibroblast-derived WNT2 increases tumor angiogenesis in colon cancer.<br>Angiogenesis, 2020, 23, 159-177.                                                                                           | 3.7 | 174       |
| 17 | High STAT5 levels mediate imatinib resistance and indicate disease progression in chronic myeloid<br>leukemia. Blood, 2011, 117, 3409-3420.                                                                           | 0.6 | 168       |
| 18 | Implications of STAT3 and STAT5 signaling on gene regulation and chromatin remodeling in hematopoietic cancer. Leukemia, 2018, 32, 1713-1726.                                                                         | 3.3 | 166       |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Stat5 Activation Is Uniquely Associated with Cytokine Signaling in Peripheral T Cells. Immunity, 1999, 11, 225-230.                                                                                                 | 6.6  | 161       |
| 20 | Advances in covalent kinase inhibitors. Chemical Society Reviews, 2020, 49, 2617-2687.                                                                                                                              | 18.7 | 160       |
| 21 | Specific DNA Binding of Stat5, but Not of Glucocorticoid Receptor, Is Required for Their Functional<br>Cooperation in the Regulation of Gene Transcription. Molecular and Cellular Biology, 1997, 17,<br>6708-6716. | 1.1  | 156       |
| 22 | Antiapoptotic activity of <i>Stat5</i> required during terminal stages of myeloid differentiation. Genes and Development, 2000, 14, 232-244.                                                                        | 2.7  | 152       |
| 23 | Antiapoptotic activity of Stat5 required during terminal stages of myeloid differentiation. Genes and Development, 2000, 14, 232-44.                                                                                | 2.7  | 147       |
| 24 | STAT1 acts as a tumor promoter for leukemia development. Cancer Cell, 2006, 10, 77-87.                                                                                                                              | 7.7  | 136       |
| 25 | STAT3 regulated ARF expression suppresses prostate cancer metastasis. Nature Communications, 2015, 6, 7736.                                                                                                         | 5.8  | 136       |
| 26 | Reduced lymphomyeloid repopulating activity from adult bone marrow and fetal liver of mice lacking expression of STAT5. Blood, 2002, 99, 479-487.                                                                   | 0.6  | 134       |
| 27 | Apoptosis Protection by the Epo Target Bcl-XL Allows Factor-Independent Differentiation of Primary Erythroblasts. Current Biology, 2002, 12, 1076-1085.                                                             | 1.8  | 130       |
| 28 | Disruption of STAT3 signalling promotes KRAS-induced lung tumorigenesis. Nature Communications, 2015, 6, 6285.                                                                                                      | 5.8  | 124       |
| 29 | STAT5 Is a Key Regulator in NK Cells and Acts as a Molecular Switch from Tumor Surveillance to Tumor Promotion. Cancer Discovery, 2016, 6, 414-429.                                                                 | 7.7  | 124       |
| 30 | Comparison of the Transactivation Domains of Stat5 and Stat6 in Lymphoid Cells and Mammary<br>Epithelial Cells. Molecular and Cellular Biology, 1997, 17, 3663-3678.                                                | 1.1  | 123       |
| 31 | TYK2–STAT1–BCL2 Pathway Dependence in T-cell Acute Lymphoblastic Leukemia. Cancer Discovery, 2013, 3, 564-577.                                                                                                      | 7.7  | 122       |
| 32 | Signal Transducer and Activator of Transcription 3 Activation Promotes Invasive Growth of Colon<br>Carcinomas through Matrix Metal loproteinase Induction. Neoplasia, 2007, 9, 279-291.                             | 2.3  | 117       |
| 33 | A small amphipathic alpha -helical region is required for transcriptional activities and proteasome-dependent turnover of the tyrosine-phosphorylated Stat5. EMBO Journal, 2000, 19, 392-399.                       | 3.5  | 114       |
| 34 | PDGFR blockade is a rational and effective therapy for NPM-ALK–driven lymphomas. Nature Medicine,<br>2012, 18, 1699-1704.                                                                                           | 15.2 | 113       |
| 35 | Pharmacologic inhibition of STAT5 in acute myeloid leukemia. Leukemia, 2018, 32, 1135-1146.                                                                                                                         | 3.3  | 112       |
| 36 | Combined STAT3 and BCR-ABL1 inhibition induces synthetic lethality in therapy-resistant chronic myeloid leukemia. Leukemia, 2015, 29, 586-597.                                                                      | 3.3  | 111       |

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Glucocorticoid receptor function in hepatocytes is essential to promote postnatal body growth.<br>Genes and Development, 2004, 18, 492-497.                                            | 2.7 | 110       |
| 38 | Constitutive activation of Stat5 promotes its cytoplasmic localization and association with PI3-kinase in myeloid leukemias. Blood, 2007, 109, 1678-1686.                              | 0.6 | 108       |
| 39 | Autocrine WNT2 signaling in fibroblasts promotes colorectal cancer progression. Oncogene, 2017, 36, 5460-5472.                                                                         | 2.6 | 107       |
| 40 | Stat5 activation enables erythropoiesis in the absence of EpoR and Jak2. Blood, 2008, 111, 4511-4522.                                                                                  | 0.6 | 101       |
| 41 | Impairment of hepatic growth hormone and glucocorticoid receptor signaling causes steatosis and hepatocellular carcinoma in mice. Hepatology, 2011, 54, 1398-1409.                     | 3.6 | 100       |
| 42 | Direct glucocorticoid receptor-Stat5 interaction in hepatocytes controls body size and maturation-related gene expression. Genes and Development, 2007, 21, 1157-1162.                 | 2.7 | 99        |
| 43 | Tumor target amplification: Implications for nano drug delivery systems. Journal of Controlled<br>Release, 2018, 275, 142-161.                                                         | 4.8 | 99        |
| 44 | Afatinib restrains K-RAS–driven lung tumorigenesis. Science Translational Medicine, 2018, 10, .                                                                                        | 5.8 | 99        |
| 45 | IGFBP7, a novel tumor stroma marker, with growth-promoting effects in colon cancer through a paracrine tumor–stroma interaction. Oncogene, 2015, 34, 815-825.                          | 2.6 | 98        |
| 46 | Oncogenic Kit controls neoplastic mast cell growth through a Stat5/PI3-kinase signaling cascade.<br>Blood, 2008, 112, 2463-2473.                                                       | 0.6 | 97        |
| 47 | Both STAT1 and STAT3 are favourable prognostic determinants in colorectal carcinoma. British<br>Journal of Cancer, 2013, 109, 138-146.                                                 | 2.9 | 92        |
| 48 | Stat5 Promotes Survival of Mammary Epithelial Cells through Transcriptional Activation of a Distinct<br>Promoter in <i>Akt1</i> . Molecular and Cellular Biology, 2010, 30, 2957-2970. | 1.1 | 90        |
| 49 | The role of Stat5 transcription factors as tumor suppressors or oncogenes. Biochimica Et Biophysica<br>Acta: Reviews on Cancer, 2011, 1815, 104-114.                                   | 3.3 | 90        |
| 50 | Stat5 regulates cellular iron uptake of erythroid cells via IRP-2 and TfR-1. Blood, 2008, 112, 3878-3888.                                                                              | 0.6 | 87        |
| 51 | The Interleukin-4 Receptor Activates STAT5 by a Mechanism That Relies upon Common γ-Chain. Journal of<br>Biological Chemistry, 1998, 273, 31222-31229.                                 | 1.6 | 77        |
| 52 | Stat5a/b contribute to interleukin 7-induced B-cell precursor expansion, but abl- and bcr/abl-induced transformation are independent of stat5. Blood, 2000, 96, 2277-83.               | 0.6 | 77        |
| 53 | A Single Amino Acid in the DNA Binding Regions of STAT5A and STAT5B Confers Distinct DNA Binding Specificities. Journal of Biological Chemistry, 1998, 273, 33936-33941.               | 1.6 | 76        |
| 54 | JunB inhibits proliferation and transformation in B-lymphoid cells. Blood, 2003, 102, 4159-4165.                                                                                       | 0.6 | 76        |

| #  | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Activated STAT5 Confers Resistance to Intestinal Injury by Increasing Intestinal Stem Cell Proliferation and Regeneration. Stem Cell Reports, 2015, 4, 209-225.                                                                                                           | 2.3 | 76        |
| 56 | Unique Effects of KIT D816V in BaF3 Cells: Induction of Cluster Formation, Histamine Synthesis, and<br>Early Mast Cell Differentiation Antigens. Journal of Immunology, 2008, 180, 5466-5476.                                                                             | 0.4 | 75        |
| 57 | Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL. Nature Communications, 2018, 9, 697.                                                                                                                             | 5.8 | 73        |
| 58 | Expression of Activated STAT5 in Neoplastic Mast Cells in Systemic Mastocytosis. American Journal of<br>Pathology, 2009, 175, 2416-2429.                                                                                                                                  | 1.9 | 72        |
| 59 | Type I Interferon Signaling Disrupts the Hepatic Urea Cycle and Alters Systemic Metabolism to Suppress<br>T Cell Function. Immunity, 2019, 51, 1074-1087.e9.                                                                                                              | 6.6 | 72        |
| 60 | Combined experience of six independent laboratories attempting to create an Ewing sarcoma mouse model. Oncotarget, 2017, 8, 34141-34163.                                                                                                                                  | 0.8 | 72        |
| 61 | Homodimerization of Interleukin-4 Receptor α Chain Can Induce Intracellular Signaling. Journal of<br>Biological Chemistry, 1996, 271, 23634-23637.                                                                                                                        | 1.6 | 67        |
| 62 | Induction of 3β-Hydroxysteroid Dehydrogenase/Δ5-Δ4 Isomerase Type 1 Gene Transcription in Human Breast<br>Cancer Cell Lines and in Normal Mammary Epithelial Cells by Interleukin-4 and Interleukin-13.<br>Molecular Endocrinology, 1999, 13, 66-81.                      | 3.7 | 67        |
| 63 | Hepatic growth hormone and glucocorticoid receptor signaling in body growth, steatosis and metabolic liver cancer development. Molecular and Cellular Endocrinology, 2012, 361, 1-11.                                                                                     | 1.6 | 65        |
| 64 | Direct Targeting Options for STAT3 and STAT5 in Cancer. Cancers, 2019, 11, 1930.                                                                                                                                                                                          | 1.7 | 65        |
| 65 | STAT5 triggers <i>BCR-ABL1</i> mutation by mediating ROS production in chronic myeloid leukaemia.<br>Oncotarget, 2012, 3, 1669-1687.                                                                                                                                      | 0.8 | 64        |
| 66 | Enterocyte STAT5 promotes mucosal wound healing via suppression of myosin light chain<br>kinaseâ€mediated loss of barrier function and inflammation. EMBO Molecular Medicine, 2012, 4, 109-124.                                                                           | 3.3 | 64        |
| 67 | STAT5 requires the N-domain for suppression of miR15/16, induction of bcl-2, and survival signaling in myeloproliferative disease. Blood, 2010, 115, 1416-1424.                                                                                                           | 0.6 | 63        |
| 68 | Prolactin and interleukin-2 receptors in T lymphocytes signal through a MGF-STAT5-like transcription factor Endocrinology, 1995, 136, 5700-5708.                                                                                                                          | 1.4 | 62        |
| 69 | Epigenetic program and transcription factor circuitry of dendritic cell development. Nucleic Acids<br>Research, 2015, 43, gkv1056.                                                                                                                                        | 6.5 | 62        |
| 70 | lschemic brain injury: A consortium analysis of key factors involved in mesenchymal stem<br>cell-mediated inflammatory reduction. Archives of Biochemistry and Biophysics, 2013, 534, 88-97.                                                                              | 1.4 | 60        |
| 71 | First-in-human response of BCL-2 inhibitor venetoclax in T-cell prolymphocytic leukemia. Blood, 2017,<br>130, 2499-2503.                                                                                                                                                  | 0.6 | 59        |
| 72 | Dominant Negative Variants of the SHP-2 Tyrosine Phosphatase Inhibit Prolactin Activation of Jak2<br>(Janus Kinase 2) and Induction of Stat5 (Signal Transducer and Activator of Transcription 5)-Dependent<br>Transcription. Molecular Endocrinology, 1998, 12, 556-567. | 3.7 | 58        |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Epidermal loss of JunB leads to a SLE phenotype due to hyper IL-6 signaling. Proceedings of the<br>National Academy of Sciences of the United States of America, 2009, 106, 20423-20428.                                        | 3.3 | 58        |
| 74 | Promising New Sources for Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2010, 6, 15-26.                                                                                                                                | 5.6 | 58        |
| 75 | STAT5BN642H is a driver mutation for T cell neoplasia. Journal of Clinical Investigation, 2017, 128, 387-401.                                                                                                                   | 3.9 | 57        |
| 76 | Erythroid progenitor renewal versus differentiation: genetic evidence for cell autonomous, essential functions of EpoR, Stat5 and the GR. Oncogene, 2006, 25, 2890-2900.                                                        | 2.6 | 56        |
| 77 | Stat5a serine 725 and 779 phosphorylation is a prerequisite for hematopoietic transformation. Blood, 2010, 116, 1548-1558.                                                                                                      | 0.6 | 56        |
| 78 | PAK-dependent STAT5 serine phosphorylation is required for BCR-ABL-induced leukemogenesis.<br>Leukemia, 2014, 28, 629-641.                                                                                                      | 3.3 | 56        |
| 79 | The second European interdisciplinary Ewing sarcoma research summit - A joint effort to deconstructing the multiple layers of a complex disease. Oncotarget, 2016, 7, 8613-8624.                                                | 0.8 | 55        |
| 80 | NOX4-driven ROS formation mediates PTP inactivation and cell transformation in FLT3ITD-positive AML cells. Leukemia, 2016, 30, 473-483.                                                                                         | 3.3 | 54        |
| 81 | JAK–STAT inhibition impairs Kâ€RASâ€driven lung adenocarcinoma progression. International Journal of<br>Cancer, 2019, 145, 3376-3388.                                                                                           | 2.3 | 54        |
| 82 | Crosstalk between inflammatory mediators and endoplasmic reticulum stress in liver diseases.<br>Cytokine, 2019, 124, 154577.                                                                                                    | 1.4 | 54        |
| 83 | Adipocyte Glucocorticoid Receptor Deficiency Attenuates Aging- and HFD-Induced Obesity and Impairs the Feeding-Fasting Transition. Diabetes, 2017, 66, 272-286.                                                                 | 0.3 | 53        |
| 84 | Co-operating STAT5 and AKT signaling pathways in chronic myeloid leukemia and mastocytosis: possible<br>new targets of therapy. Haematologica, 2014, 99, 417-429.                                                               | 1.7 | 50        |
| 85 | Structural and functional consequences of the STAT5BN642H driver mutation. Nature Communications, 2019, 10, 2517.                                                                                                               | 5.8 | 50        |
| 86 | Oncogenic role of <scp>miR</scp> â€155 in anaplastic large cell lymphoma lacking the t(2;5)<br>translocation. Journal of Pathology, 2015, 236, 445-456.                                                                         | 2.1 | 49        |
| 87 | Normal and pathological erythropoiesis in adults: from gene regulation to targeted treatment concepts. Haematologica, 2018, 103, 1593-1603.                                                                                     | 1.7 | 49        |
| 88 | Disruption of the growth hormone-Signal transducer and activator of transcription 5-Insulinlike<br>growth factor 1 axis severely aggravates liver fibrosis in a mouse model of cholestasis. Hepatology,<br>2010, 51, 1319-1326. | 3.6 | 48        |
| 89 | Adipocyte STAT5 deficiency promotes adiposity and impairs lipid mobilisation in mice. Diabetologia, 2017, 60, 296-305.                                                                                                          | 2.9 | 48        |
| 90 | p19ARF/p14ARF controls oncogenic functions of signal transducer and activator of transcription 3 in hepatocellular carcinoma. Hepatology, 2011, 54, 164-172.                                                                    | 3.6 | 47        |

| #   | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | O-GlcNAcylation of STAT5 controls tyrosine phosphorylation and oncogenic transcription in STAT5-dependent malignancies. Leukemia, 2017, 31, 2132-2142.                                                                                               | 3.3 | 47        |
| 92  | When the guardian sleeps: Reactivation of the p53 pathway in cancer. Mutation Research - Reviews in Mutation Research, 2017, 773, 1-13.                                                                                                              | 2.4 | 47        |
| 93  | Hepatic growth hormone - JAK2 - STAT5 signalling: Metabolic function, non-alcoholic fatty liver disease and hepatocellular carcinoma progression. Cytokine, 2019, 124, 154569.                                                                       | 1.4 | 47        |
| 94  | Induction of 3Â-Hydroxysteroid Dehydrogenase/Â5-Â4 Isomerase Type 1 Gene Transcription in Human Breast<br>Cancer Cell Lines and in Normal Mammary Epithelial Cells by Interleukin-4 and Interleukin-13.<br>Molecular Endocrinology, 1999, 13, 66-81. | 3.7 | 47        |
| 95  | CDK6 is an essential direct target of NUP98 fusion proteins in acute myeloid leukemia. Blood, 2020, 136, 387-400.                                                                                                                                    | 0.6 | 46        |
| 96  | Structural Implications of STAT3 and STAT5 SH2 Domain Mutations. Cancers, 2019, 11, 1757.                                                                                                                                                            | 1.7 | 45        |
| 97  | The dark and the bright side of Stat3: proto-oncogene and tumor-suppressor. Frontiers in Bioscience -<br>Landmark, 2009, Volume, 2944.                                                                                                               | 3.0 | 44        |
| 98  | The ERBB-STAT3 Axis Drives Tasmanian Devil Facial Tumor Disease. Cancer Cell, 2019, 35, 125-139.e9.                                                                                                                                                  | 7.7 | 43        |
| 99  | Growth-hormone–induced signal transducer and activator of transcription 5 signaling causes gigantism, inflammation, and premature death but protects mice from aggressive liver cancer.<br>Hepatology, 2012, 55, 941-952.                            | 3.6 | 42        |
| 100 | STAT3 promotes melanoma metastasis by CEBP-induced repression of the MITF pathway. Oncogene, 2021, 40, 1091-1105.                                                                                                                                    | 2.6 | 42        |
| 101 | STAT5 drives abnormal proliferation in autosomal dominant polycystic kidney disease. Kidney<br>International, 2017, 91, 575-586.                                                                                                                     | 2.6 | 41        |
| 102 | Stat5a/b contribute to interleukin 7–induced B-cell precursor expansion, but abl- andbcr/abl-induced transformation are independent of Stat5. Blood, 2000, 96, 2277-2283.                                                                            | 0.6 | 41        |
| 103 | Gadd45Î <sup>3</sup> Is Dispensable for Normal Mouse Development and T-Cell Proliferation. Molecular and Cellular Biology, 2001, 21, 3137-3143.                                                                                                      | 1.1 | 40        |
| 104 | Dependency on the TYK2/STAT1/MCL1 axis in anaplastic large cell lymphoma. Leukemia, 2019, 33, 696-709.                                                                                                                                               | 3.3 | 40        |
| 105 | Activation of STAT5 by IL-4 relies on Janus kinase function but not on receptor tyrosine phosphorylation, and can contribute to both cell proliferation and gene regulation. International Immunology, 1999, 11, 1283-1294.                          | 1.8 | 39        |
| 106 | The different functions of Stat5 and chromatin alteration through Stat5 proteins. Frontiers in<br>Bioscience - Landmark, 2008, Volume, 6237.                                                                                                         | 3.0 | 39        |
| 107 | Inhibition of STAT5: A therapeutic option in BCR-ABL1-driven leukemia. Oncotarget, 2014, 5, 9564-9576.                                                                                                                                               | 0.8 | 39        |
| 108 | STAT5 requires the N-domain to maintain hematopoietic stem cell repopulating function and appropriate lymphoid-myeloid lineage output. Experimental Hematology, 2007, 35, 1684-1694.                                                                 | 0.2 | 37        |

| #   | Article                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | STAT3 controls matrix metalloproteinase-1 expression in colon carcinoma cells by both direct and AP-1-mediated interaction with the MMP-1 promoter. Biological Chemistry, 2011, 392, 449-59. | 1.2 | 37        |
| 110 | NGR (Asn-Gly-Arg)-targeted delivery of coagulase to tumor vasculature arrests cancer cell growth.<br>Oncogene, 2018, 37, 3967-3980.                                                          | 2.6 | 37        |
| 111 | Cytokine Receptor-independent, Constitutively Active Variants of STAT5. Journal of Biological<br>Chemistry, 1997, 272, 30237-30243.                                                          | 1.6 | 36        |
| 112 | Combined targeting of STAT3 and STAT5: a novel approach to overcome drug resistance in chronic myeloid leukemia. Haematologica, 2017, 102, 1519-1529.                                        | 1.7 | 36        |
| 113 | New perspectives in stem cell research: beyond embryonic stem cells. Cell Proliferation, 2011, 44, 9-14.                                                                                     | 2.4 | 35        |
| 114 | AF1q is a novel TCF7 co-factor which activates CD44 and promotes breast cancer metastasis.<br>Oncotarget, 2015, 6, 20697-20710.                                                              | 0.8 | 35        |
| 115 | Persistent STAT5 activation in myeloid neoplasms recruits p53 into gene regulation. Oncogene, 2015, 34, 1323-1332.                                                                           | 2.6 | 34        |
| 116 | The ratio of STAT1 to STAT3 expression is a determinant of colorectal cancer growth. Oncotarget, 2016, 7, 51096-51106.                                                                       | 0.8 | 34        |
| 117 | MLLT11/AF1q boosts oncogenic STAT3 activity through <i>Src</i> -PDGFR tyrosine kinase signaling.<br>Oncotarget, 2016, 7, 43960-43973.                                                        | 0.8 | 34        |
| 118 | Jak1 deficiency leads to enhanced Abelson-induced B-cell tumor formation. Blood, 2003, 101, 4937-4943.                                                                                       | 0.6 | 33        |
| 119 | Natural compound methyl protodioscin protects against intestinal inflammation through modulation of intestinal immune responses. Pharmacology Research and Perspectives, 2015, 3, e00118.    | 1.1 | 33        |
| 120 | Oncogenic STAT5 signaling promotes oxidative stress in chronic myeloid leukemia cells by repressing antioxidant defenses. Oncotarget, 2017, 8, 41876-41889.                                  | 0.8 | 33        |
| 121 | The First European Interdisciplinary Ewing Sarcoma Research Summit. Frontiers in Oncology, 2012, 2, 54.                                                                                      | 1.3 | 32        |
| 122 | JAK TAT core cancer pathway: An integrative cancer interactome analysis. Journal of Cellular and<br>Molecular Medicine, 2022, 26, 2049-2062.                                                 | 1.6 | 32        |
| 123 | Reliable Quantification of Protein Expression and Cellular Localization in Histological Sections. PLoS<br>ONE, 2014, 9, e100822.                                                             | 1.1 | 31        |
| 124 | A novel germline <i>JAK2</i> mutation in familial myeloproliferative neoplasms. American Journal of<br>Hematology, 2014, 89, 117-118.                                                        | 2.0 | 31        |
| 125 | Lung Adenocarcinomas and Lung Cancer Cell Lines Show Association of MMP-1 Expression With STAT3<br>Activation. Translational Oncology, 2015, 8, 97-105.                                      | 1.7 | 31        |
| 126 | SIAH2 antagonizes TYK2-STAT3 signaling in lung carcinoma cells. Oncotarget, 2014, 5, 3184-3196.                                                                                              | 0.8 | 31        |

| #   | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Src family kinases mediate cytoplasmic retention of activated STAT5 in BCR–ABL-positive cells.<br>Oncogene, 2013, 32, 3587-3597.                                                                           | 2.6 | 30        |
| 128 | High Keratin 8/18 Ratio Predicts Aggressive Hepatocellular Cancer Phenotype. Translational Oncology, 2019, 12, 256-268.                                                                                    | 1.7 | 28        |
| 129 | Development of HDAC Inhibitors Exhibiting Therapeutic Potential in T-Cell Prolymphocytic Leukemia.<br>Journal of Medicinal Chemistry, 2021, 64, 8486-8509.                                                 | 2.9 | 28        |
| 130 | A rare castrationâ€resistant progenitor cell population is highly enriched in Ptenâ€null prostate<br>tumours. Journal of Pathology, 2017, 243, 51-64.                                                      | 2.1 | 27        |
| 131 | Steering of carcinoma progression by the YIN/YANG interaction of STAT1/STAT3. BioScience Trends, 2017, 11, 1-8.                                                                                            | 1.1 | 27        |
| 132 | High activation of STAT5A drives peripheral T-cell lymphoma and leukemia. Haematologica, 2020, 105,<br>435-447.                                                                                            | 1.7 | 27        |
| 133 | Regulation of the trans-activation potential of STAT5 through its DNA-binding activity and<br>interactions with heterologous transcription factors. Growth Hormone and IGF Research, 2000, 10,<br>S15-S20. | 0.5 | 26        |
| 134 | Effective targeting of STAT5-mediated survival in myeloproliferative neoplasms using ABT-737 combined with rapamycin. Leukemia, 2010, 24, 1397-1405.                                                       | 3.3 | 26        |
| 135 | Opioids drive breast cancer metastasis through the δ-opioid receptor and oncogenic STAT3. Neoplasia, 2021, 23, 270-279.                                                                                    | 2.3 | 26        |
| 136 | Presence or absence of TGF-beta determines IL-4-induced generation of type 1 or type 2 CD8 T cell subsets. Journal of Immunology, 1999, 162, 209-14.                                                       | 0.4 | 26        |
| 137 | Human stem cells alter the invasive properties of somatic cells via paracrine activation of mTORC1.<br>Nature Communications, 2017, 8, 595.                                                                | 5.8 | 25        |
| 138 | A role for STAT5A/B in protection of peripheral T-lymphocytes from postactivation apoptosis: Insights from gene expression profiling. Cytokine, 2006, 34, 143-154.                                         | 1.4 | 24        |
| 139 | Hepatic Deletion of Janus Kinase 2 Counteracts Oxidative Stress in Mice. Scientific Reports, 2016, 6, 34719.                                                                                               | 1.6 | 24        |
| 140 | A hydride transfer complex reprograms NAD metabolism and bypasses senescence. Molecular Cell, 2021, 81, 3848-3865.e19.                                                                                     | 4.5 | 24        |
| 141 | YK-4-279 effectively antagonizes EWS-FLI1 induced leukemia in a transgenic mouse model. Oncotarget, 2015, 6, 37678-37694.                                                                                  | 0.8 | 24        |
| 142 | Synergistic crossâ€ŧalk of hedgehog and interleukinâ€6 signaling drives growth of basal cell carcinoma.<br>International Journal of Cancer, 2018, 143, 2943-2954.                                          | 2.3 | 23        |
| 143 | A STAT5B–CD9 axis determines self-renewal in hematopoietic and leukemic stem cells. Blood, 2021, 138, 2347-2359.                                                                                           | 0.6 | 23        |
| 144 | Diverging fates of cells of origin in acute and chronic leukaemia. EMBO Molecular Medicine, 2012, 4, 283-297.                                                                                              | 3.3 | 22        |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | The unfolded protein response impacts melanoma progression by enhancing FGF expression and can be antagonized by a chemical chaperone. Scientific Reports, 2017, 7, 17498.                                               | 1.6 | 22        |
| 146 | Malignant Phenotypes in Metastatic Melanoma are Governed by SR-BI and its Association with Glycosylation and STAT5 Activation. Molecular Cancer Research, 2018, 16, 135-146.                                             | 1.5 | 21        |
| 147 | Activation of STAT proteins and cytokine genes in human Th1 and Th2 cells generated in the absence of IL-12 and IL-4. Journal of Immunology, 1998, 160, 3385-92.                                                         | 0.4 | 21        |
| 148 | Drug-induced inhibition of phosphorylation of STAT5 overrides drug resistance in neoplastic mast cells. Leukemia, 2018, 32, 1016-1022.                                                                                   | 3.3 | 20        |
| 149 | STAT3 activation in large granular lymphocyte leukemia is associated with cytokine signaling and DNA hypermethylation. Leukemia, 2021, 35, 3430-3443.                                                                    | 3.3 | 20        |
| 150 | STAT3Î <sup>2</sup> is a tumor suppressor in acute myeloid leukemia. Blood Advances, 2019, 3, 1989-2002.                                                                                                                 | 2.5 | 20        |
| 151 | Constitutive STAT5 activation regulates Paneth and Paneth-like cells to control <i>Clostridium difficile</i> colitis. Life Science Alliance, 2019, 2, e201900296.                                                        | 1.3 | 20        |
| 152 | The <scp>JAK2</scp> / <scp>STAT5</scp> signaling pathway as a potential therapeutic target in canine mastocytoma. Veterinary and Comparative Oncology, 2018, 16, 55-68.                                                  | 0.8 | 19        |
| 153 | Emerging therapeutic targets in myeloproliferative neoplasms and peripheral T-cell leukemia and lymphomas. Expert Opinion on Therapeutic Targets, 2018, 22, 45-57.                                                       | 1.5 | 19        |
| 154 | The Inhibition of Stat5 by a Peptide Aptamer Ligand Specific for the DNA Binding Domain Prevents<br>Target Gene Transactivation and the Growth of Breast and Prostate Tumor Cells. Pharmaceuticals,<br>2013, 6, 960-987. | 1.7 | 18        |
| 155 | The neonatal microenvironment programs innate Î <sup>3</sup> δT cells through the transcription factor STAT5.<br>Journal of Clinical Investigation, 2020, 130, 2496-2508.                                                | 3.9 | 18        |
| 156 | Stat5 Exerts Distinct, Vital Functions in the Cytoplasm and Nucleus of Bcr-Abl+ K562 and Jak2(V617F)+<br>HEL Leukemia Cells. Cancers, 2015, 7, 503-537.                                                                  | 1.7 | 17        |
| 157 | Noncanonical effector functions of the T-memory–like T-PLL cell are shaped by cooperative TCL1A and TCR signaling. Blood, 2020, 136, 2786-2802.                                                                          | 0.6 | 17        |
| 158 | Thyroid and androgen receptor signaling are antagonized by μ rystallin in prostate cancer.<br>International Journal of Cancer, 2021, 148, 731-747.                                                                       | 2.3 | 17        |
| 159 | Interleukinâ€6 receptor alpha blockade improves skin lesions in a murine model of systemic lupus<br>erythematosus. Experimental Dermatology, 2016, 25, 305-310.                                                          | 1.4 | 16        |
| 160 | TYK2 licenses non-canonical inflammasome activation during endotoxemia. Cell Death and Differentiation, 2021, 28, 748-763.                                                                                               | 5.0 | 16        |
| 161 | Proposed Diagnostic Criteria and Classification of Canine Mast Cell Neoplasms: A Consensus<br>Proposal. Frontiers in Veterinary Science, 2021, 8, 755258.                                                                | 0.9 | 16        |
| 162 | A mouse model to identify cooperating signaling pathways in cancer. Nature Methods, 2012, 9, 897-900.                                                                                                                    | 9.0 | 15        |

10

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | STAT5 is required for lipid breakdown and beta-adrenergic responsiveness of brown adipose tissue.<br>Molecular Metabolism, 2020, 40, 101026.                                                                            | 3.0 | 15        |
| 164 | Activation of STAT6 is not dependent on phosphotyrosine-mediated docking to the interleukin-4<br>receptor and can be blocked by dominant-negative mutants of both receptor subunits. FEBS Journal,<br>1998, 251, 25-35. | 0.2 | 14        |
| 165 | Sensitized phenotypic screening identifies gene dosage sensitive region on chromosome 11 that predisposes to disease in mice. EMBO Molecular Medicine, 2011, 3, 50-66.                                                  | 3.3 | 14        |
| 166 | STAT5 deficiency in hepatocytes reduces diethylnitrosamine-induced liver tumorigenesis in mice.<br>Cytokine, 2019, 124, 154573.                                                                                         | 1.4 | 14        |
| 167 | <scp>AKT</scp> 3 drives adenoid cystic carcinoma development in salivary glands. Cancer Medicine, 2018, 7, 445-453.                                                                                                     | 1.3 | 13        |
| 168 | The stromal microenvironment provides an escape route from FLT3 inhibitors through the GAS6-AXL-STAT5 axis. Haematologica, 2019, 104, 1907-1909.                                                                        | 1.7 | 13        |
| 169 | The Diverse Roles of γδT Cells in Cancer: From Rapid Immunity to Aggressive Lymphoma. Cancers, 2021, 13, 6212.                                                                                                          | 1.7 | 13        |
| 170 | Acetylation and sumoylation control STAT5 activation antagonistically. Jak-stat, 2012, 1, 203-207.                                                                                                                      | 2.2 | 12        |
| 171 | STAT5a/b Deficiency Delays, but does not Prevent, Prolactin-Driven Prostate Tumorigenesis in Mice.<br>Cancers, 2019, 11, 929.                                                                                           | 1.7 | 12        |
| 172 | Cell Metabolism Control Through O-GlcNAcylation of STAT5: A Full or Empty Fuel Tank Makes a Big<br>Difference for Cancer Cell Growth and Survival. International Journal of Molecular Sciences, 2019,<br>20, 1028.      | 1.8 | 12        |
| 173 | STAT5BN642H drives transformation of NKT cells: a novel mouse model for CD56+ T-LGL leukemia.<br>Leukemia, 2019, 33, 2336-2340.                                                                                         | 3.3 | 12        |
| 174 | STAT5 is Expressed in CD34+/CD38â^' Stem Cells and Serves as a Potential Molecular Target in Ph-Negative Myeloproliferative Neoplasms. Cancers, 2020, 12, 1021.                                                         | 1.7 | 12        |
| 175 | A centric view of JAK/STAT5 in intestinal homeostasis, infection, and inflammation. Cytokine, 2021, 139, 155392.                                                                                                        | 1.4 | 12        |
| 176 | Expansion of <i><scp>BCR</scp>/<scp>ABL</scp>1</i> <sup>+</sup> cells requires <scp>PAK</scp> 2 but<br>not <scp>PAK</scp> 1. British Journal of Haematology, 2017, 179, 229-241.                                        | 1.2 | 11        |
| 177 | Pharmacologic IL-6Rα inhibition in cholangiocarcinoma promotes cancer cell growth and survival.<br>Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 308-321.                                     | 1.8 | 11        |
| 178 | Precision Medicine in Hematology 2021: Definitions, Tools, Perspectives, and Open Questions.<br>HemaSphere, 2021, 5, e536.                                                                                              | 1.2 | 11        |
| 179 | Serine phosphorylation of the Stat5a C-terminus is a driving force for transformation. Frontiers in Bioscience - Landmark, 2011, 16, 3043.                                                                              | 3.0 | 10        |
| 180 | Down-regulation of A20 promotes immune escape of lung adenocarcinomas. Science Translational<br>Medicine, 2021, 13, .                                                                                                   | 5.8 | 10        |

| #   | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Stat5 gene dosage in T cells modulates CD8+T-cell homeostasis and attenuates contact<br>hypersensitivity response in mice. Allergy: European Journal of Allergy and Clinical Immunology, 2015,<br>70, 67-79. | 2.7 | 9         |
| 182 | Life Under Hypoxia Lowers Blood Glucose Independently of Effects on Appetite and Body Weight in<br>Mice. Frontiers in Endocrinology, 2018, 9, 490.                                                           | 1.5 | 7         |
| 183 | Targeting STAT3 and STAT5 in Cancer. Cancers, 2020, 12, 2002.                                                                                                                                                | 1.7 | 7         |
| 184 | Proteomic Analysis Identifies NDUFS1 and ATP5O as Novel Markers for Survival Outcome in Prostate Cancers, 2021, 13, 6036.                                                                                    | 1.7 | 7         |
| 185 | STAT5A/5B-specific expansion and transformation of hematopoietic stem cells. Blood Cancer Journal, 2017, 7, e514-e514.                                                                                       | 2.8 | 6         |
| 186 | Cooperation of ETV6/RUNX1 and BCL2 enhances immunoglobulin production and accelerates glomerulonephritis in transgenic mice. Oncotarget, 2016, 7, 12191-12205.                                               | 0.8 | 6         |
| 187 | Variants in STAT5B Associate with Serum TC and LDL-C Levels. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E1496-E1501.                                                                        | 1.8 | 5         |
| 188 | Oncogenic Kinase Cascades Induce Molecular Mechanisms That Protect Leukemic Cell Models from<br>Lethal Effects of De Novo dNTP Synthesis Inhibition. Cancers, 2021, 13, 3464.                                | 1.7 | 5         |
| 189 | A Detailed Protocol for Bacterial Artificial Chromosome Recombineering to Study Essential Genes in<br>Stem Cells. Methods in Molecular Biology, 2008, 430, 269-293.                                          | 0.4 | 4         |
| 190 | A Recurrent STAT5BN642H Driver Mutation in Feline Alimentary T Cell Lymphoma. Cancers, 2021, 13, 5238.                                                                                                       | 1.7 | 4         |
| 191 | A haunted beast: Targeting STAT5BN642H in T-Cell Neoplasia. Molecular and Cellular Oncology, 2018, 5, e1435181.                                                                                              | 0.3 | 3         |
| 192 | Differential Roles of Cytokine Signaling during T-cell Development. Cold Spring Harbor Symposia on<br>Quantitative Biology, 1999, 64, 389-396.                                                               | 2.0 | 3         |
| 193 | Structural and utational nalysis of ember-pecific STAT unctions. Biochimica Et Biophysica Acta -<br>General Subjects, 2022, 1866, 130058.                                                                    | 1.1 | 3         |
| 194 | The antiapoptotic function of megakaryocyte growth and development factor (Peg-rmMGDF) Is<br>disrupted in STAT5ab â~' /â~' and JAK2 + /â~' mice. Experimental Hematology, 2000, 28, 51.                      | 0.2 | 2         |
| 195 | Declined presentation. Experimental Hematology, 2013, 41, S48.                                                                                                                                               | 0.2 | 2         |
| 196 | Editorial: Recovery from chemotherapy depends on STAT1 for replenishment of B lymphopoiesis.<br>Journal of Leukocyte Biology, 2014, 95, 849-851.                                                             | 1.5 | 2         |
| 197 | Interplay of transcription factors STAT3, STAT1 and AP-1 mediates activity of the matrix metallo-proteinase-1 promoter in colorectal carcinoma cells. Neoplasma, 2019, 66, 357-366.                          | 0.7 | 2         |
| 198 | STAT3 Inhibition Synergizes with BCR-ABL1 Inhibition to Overcome Kinase-Independent TKI Resistance in<br>Chronic Myeloid Leukemia (CML). Blood, 2012, 120, 31-31.                                            | 0.6 | 2         |

| #   | Article                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Adipocyte STAT5 deficiency does not affect blood glucose homeostasis in obese mice. PLoS ONE, 2021, 16, e0260501.                                                                               | 1.1 | 2         |
| 200 | Stat5 as a Hematopoietic Master Regulator for Differentiation and Neoplasia Development. , 2012, , 153-167.                                                                                     |     | 1         |
| 201 | Editorial: Cytokines in liver diseases. Cytokine, 2019, 124, 154608.                                                                                                                            | 1.4 | 1         |
| 202 | Endogenous N-Terminal Truncated STAT5 Expressed from Alternative Start Codons Promotes SCF<br>Signaling in Murine Primary Mast Cell Cultures Blood, 2004, 104, 815-815.                         | 0.6 | 1         |
| 203 | TYK2-STAT1 Pathway Positively Regulates BCL2 Gene Expression in T-Cell Acute Lymphoblastic Leukemia.<br>Blood, 2012, 120, 1470-1470.                                                            | 0.6 | 1         |
| 204 | Oncogenic TYK2 <sup>P760L</sup> kinase is effectively targeted by combinatorial TYK2, mTOR and CDK4/6 kinase blockade. Haematologica, 2022, , .                                                 | 1.7 | 1         |
| 205 | Efficacy and Synergy of Small Molecule Inhibitors Targeting FLT3-ITD+ Acute Myeloid Leukemia.<br>Cancers, 2021, 13, 6181.                                                                       | 1.7 | 1         |
| 206 | Correlation of malignancy parameters in colorectal carcinoma with up- and downstream signalling partners of STAT3. Cell Communication and Signaling, 2009, 7, .                                 | 2.7 | 0         |
| 207 | 895 A PRO- AND ANTI-ONCOGENIC ROLE OF STAT3 IN HEPATOCELLULAR CARCINOMA PROGRESSION. Journal of Hepatology, 2010, 52, S348.                                                                     | 1.8 | 0         |
| 208 | 7018 POSTER NFkB Activity Modulates the Oncogenic Potential of Stat3 in Prostate Cancer<br>Development. European Journal of Cancer, 2011, 47, S490.                                             | 1.3 | 0         |
| 209 | Enterocyte STAT5 promotes mucosal wound healing via suppression of myosin light chain<br>kinase-mediated loss of barrier function and inflammation. Inflammatory Bowel Diseases, 2011, 17, S81. | 0.9 | 0         |
| 210 | STAT5 - a central player in BCR/ABL+ leukemia. Experimental Hematology, 2013, 41, S6.                                                                                                           | 0.2 | 0         |
| 211 | Reply. Hepatology, 2013, 58, 2210-2210.                                                                                                                                                         | 3.6 | 0         |
| 212 | ID: 263. Cytokine, 2015, 76, 112.                                                                                                                                                               | 1.4 | 0         |
| 213 | ID: 66. Cytokine, 2015, 76, 77.                                                                                                                                                                 | 1.4 | 0         |
| 214 | 32 Cytokine-STAT5 Signaling Controls Intestinal Stem Cell Activation to Suppress Clostridium Difficile<br>- Induced Gut Inflammation. Gastroenterology, 2016, 150, S11.                         | 0.6 | 0         |
| 215 | Cover Image, Volume 16, Issue 1. Veterinary and Comparative Oncology, 2018, 16, i.                                                                                                              | 0.8 | 0         |
| 216 | Detection of Activated STAT5 in the Cytoplasm of Neoplastic Cells in Patients with AML, CML, and<br>Systemic Mastocytosis Blood, 2006, 108, 2305-2305.                                          | 0.6 | 0         |

| #   | Article                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Pathway Dependence on the Tyrosine Kinase TYK2 and Its Mediator STAT1 In T-Cell Acute Lymphoblastic<br>Leukemia. Blood, 2010, 116, 3155-3155.                            | 0.6 | 0         |
| 218 | Abstract 2809: Pathway dependence on the tyrosine kinase TYK2 in T-cell acute lymphoblastic leukemia. , 2011, , .                                                        |     | 0         |
| 219 | Abstract 4880: Disruption of STAT3 signaling promotes K-Ras induced lung tumorigenesis. , 2012, , .                                                                      |     | 0         |
| 220 | BP5-087, a Novel STAT3 Inhibitor, Combines With BCR-ABL1 Inhibition To Overcome Kinase-Independent<br>Resistance In Chronic Myeloid Leukemia. Blood, 2013, 122, 854-854. | 0.6 | 0         |
| 221 | Abstract 79: Deletion of STAT3 in a mouse model for metastatic melanoma. , 2014, , .                                                                                     |     | 0         |
| 222 | Abstract 61: A mouse model for small round cell tumors induced by the Ewing sarcoma oncogene EWS/FLI1. , 2014, , .                                                       |     | 0         |
| 223 | Abstract 108: Consequences of hepatic JAK2 deficiency for liver metabolism and hepatocarcinogenesis. , 2014, , .                                                         |     | 0         |
| 224 | Abstract 3138: IL-6/Stat3 signaling is an indispensable modulator of oncogene-induced cellular senescence. , 2014, , .                                                   |     | 0         |
| 225 | Abstract 3284: Unfavorable outcomes of EWS-FLI1 expression in different tissues of a transgenic mouse model. , 2015, , .                                                 |     | 0         |
| 226 | Abstract 1184: Characterization of novel STAT5 inhibitors to interfere with the oncogenic activities of STAT5 in hematopoietic diseases. , 2017, , .                     |     | 0         |
| 227 | Abstract 4463: The coactivator oncogene AF1Q associates with STAT3 activation downstream of MET action in gastro-esophageal cancer patients. , 2017, , .                 |     | 0         |
| 228 | P097 REGULATION OF PANETH CELL LINEAGES FOR REGIONAL IMMUNE SPECIALIZATION TO CONTROL COMORBIDITY OF C. DIFFICILE INFECTION WITH IBD. Gastroenterology, 2018, 154, S50.  | 0.6 | 0         |