Xuping Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7620789/publications.pdf

Version: 2024-02-01

		34076	30058
107	14,181	52	103
papers	citations	h-index	g-index
154	154	154	18641
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Spike mutation D614G alters SARS-CoV-2 fitness. Nature, 2021, 592, 116-121.	13.7	1,380
2	Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nature Medicine, 2021, 27, 717-726.	15.2	838
3	Evasion of Type I Interferon by SARS-CoV-2. Cell Reports, 2020, 33, 108234.	2.9	742
4	An Infectious cDNA Clone of SARS-CoV-2. Cell Host and Microbe, 2020, 27, 841-848.e3.	5.1	617
5	SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature, 2021, 596, 109-113.	13.7	586
6	Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature, 2021, 591, 293-299.	13.7	579
7	Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nature Medicine, 2021, 27, 620-621.	15.2	562
8	Neutralizing Activity of BNT162b2-Elicited Serum. New England Journal of Medicine, 2021, 384, 1466-1468.	13.9	528
9	The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature, 2022, 602, 294-299.	13.7	364
10	SARS-CoV-2 Neutralization with BNT162b2 Vaccine Dose 3. New England Journal of Medicine, 2021, 385, 1627-1629.	13.9	346
11	BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants. Nature, 2021, 596, 273-275.	13.7	318
12	A high-throughput neutralizing antibody assay for COVID-19 diagnosis and vaccine evaluation. Nature Communications, 2020, 11, 4059.	5 . 8	266
13	An Infectious cDNA Clone of Zika Virus to Study Viral Virulence, Mosquito Transmission, and Antiviral Inhibitors. Cell Host and Microbe, 2016, 19, 891-900.	5.1	252
14	A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models. Nature Medicine, 2017, 23, 763-767.	15.2	242
15	Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nature Microbiology, 2021, 6, 1233-1244.	5.9	237
16	An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction. Nature Communications, 2018, 9, 414.	5. 8	231
17	In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. Nature, 2021, 596, 103-108.	13.7	222
18	Delta spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant. Cell Reports, 2022, 39, 110829.	2.9	214

#	Article	IF	Citations
19	Zika virus produces noncoding RNAs using a multi-pseudoknot structure that confounds a cellular exonuclease. Science, 2016, 354, 1148-1152.	6.0	212
20	A nanoluciferase SARS-CoV-2 for rapid neutralization testing and screening of anti-infective drugs for COVID-19. Nature Communications, 2020, 11, 5214.	5.8	179
21	Membrane Topology and Function of Dengue Virus NS2A Protein. Journal of Virology, 2013, 87, 4609-4622.	1.5	162
22	Molecular determinants and mechanism for antibody cocktail preventing SARS-CoV-2 escape. Nature Communications, 2021, 12, 469.	5.8	148
23	Engineering SARS-CoV-2 using a reverse genetic system. Nature Protocols, 2021, 16, 1761-1784.	5.5	137
24	Inhibition of Dengue Virus by Targeting Viral NS4B Protein. Journal of Virology, 2011, 85, 11183-11195.	1.5	130
25	Nasal delivery of an IgM offers broad protection from SARS-CoV-2 variants. Nature, 2021, 595, 718-723.	13.7	128
26	A single-dose live-attenuated vaccine prevents Zika virus pregnancy transmission and testis damage. Nature Communications, 2017, 8, 676.	5.8	125
27	Neutralizing Antibodies Against SARS-CoV-2 Variants After Infection and Vaccination. JAMA - Journal of the American Medical Association, 2021, 325, 1896.	3.8	125
28	SARS-CoV-2 Infects Human EngineeredÂHeart Tissues and Models COVID-19 Myocarditis. JACC Basic To Translational Science, 2021, 6, 331-345.	1.9	121
29	Functional Analysis of Glycosylation of Zika Virus Envelope Protein. Cell Reports, 2017, 21, 1180-1190.	2.9	118
30	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	13.7	117
31	Characterization of Dengue Virus NS4A and NS4B Protein Interaction. Journal of Virology, 2015, 89, 3455-3470.	1.5	116
32	BNT162b2-Elicited Neutralization against New SARS-CoV-2 Spike Variants. New England Journal of Medicine, 2021, 385, 472-474.	13.9	93
33	Neutralization against Omicron SARS-CoV-2 from previous non-Omicron infection. Nature Communications, 2022, 13, 852.	5.8	92
34	Two Distinct Sets of NS2A Molecules Are Responsible for Dengue Virus RNA Synthesis and Virion Assembly. Journal of Virology, 2015, 89, 1298-1313.	1.5	90
35	Axl Promotes Zika Virus Entry and Modulates the Antiviral State of Human Sertoli Cells. MBio, 2019 , 10 , .	1.8	88
36	Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis. PLoS Pathogens, 2022, 18, e1010627.	2.1	85

#	Article	IF	CITATIONS
37	Mapping the Interactions between the NS4B and NS3 Proteins of Dengue Virus. Journal of Virology, 2015, 89, 3471-3483.	1.5	83
38	A Multiplex Microsphere Immunoassay for Zika Virus Diagnosis. EBioMedicine, 2017, 16, 136-140.	2.7	83
39	Envelope protein ubiquitination drives entry and pathogenesis of Zika virus. Nature, 2020, 585, 414-419.	13.7	82
40	Rational Design of a Flavivirus Vaccine by Abolishing Viral RNA 2′- <i>O</i> Methylation. Journal of Virology, 2013, 87, 5812-5819.	1.5	81
41	Zika Virus Vaccine: Progress and Challenges. Cell Host and Microbe, 2018, 24, 12-17.	5.1	81
42	Neutralization and durability of 2 or 3 doses of the BNT162b2 vaccine against Omicron SARS-CoV-2. Cell Host and Microbe, 2022, 30, 485-488.e3.	5.1	80
43	Dimerization of Flavivirus NS4B Protein. Journal of Virology, 2014, 88, 3379-3391.	1.5	77
44	Zika Virus Replicons for Drug Discovery. EBioMedicine, 2016, 12, 156-160.	2.7	77
45	Zika Virus: Diagnosis, Therapeutics, and Vaccine. ACS Infectious Diseases, 2016, 2, 170-172.	1.8	76
46	Understanding Zika Virus Stability and Developing a Chimeric Vaccine through Functional Analysis. MBio, 2017, 8, .	1.8	76
47	Treatment of Human Glioblastoma with a Live Attenuated Zika Virus Vaccine Candidate. MBio, 2018, 9, .	1.8	74
48	A Single Amino Acid in Nonstructural Protein NS4B Confers Virulence to Dengue Virus in AG129 Mice through Enhancement of Viral RNA Synthesis. Journal of Virology, 2011, 85, 7775-7787.	1.5	73
49	Targeting dengue virus NS4B protein for drug discovery. Antiviral Research, 2015, 118, 39-45.	1.9	69
50	Dengue NS2A Protein Orchestrates Virus Assembly. Cell Host and Microbe, 2019, 26, 606-622.e8.	5.1	68
51	Inhibition of Coronavirus Entry <i>In Vitro</i> and <i>Ex Vivo</i> by a Lipid-Conjugated Peptide Derived from the SARS-CoV-2 Spike Glycoprotein HRC Domain. MBio, 2020, 11, .	1.8	63
52	Neutralization of Omicron BA.1, BA.2, and BA.3 SARS-CoV-2 by 3 doses of BNT162b2 vaccine. Nature Communications, 2022, 13, .	5.8	63
53	RPLP1 and RPLP2 Are Essential Flavivirus Host Factors That Promote Early Viral Protein Accumulation. Journal of Virology, 2017, 91, .	1.5	60
54	A Rapid Zika Diagnostic Assay to Measure Neutralizing Antibodies in Patients. EBioMedicine, 2017, 17, 157-162.	2.7	58

#	Article	IF	Citations
55	Mouse-adapted SARS-CoV-2 protects animals from lethal SARS-CoV challenge. PLoS Biology, 2021, 19, e3001284.	2.6	54
56	A Zika virus envelope mutation preceding the 2015 epidemic enhances virulence and fitness for transmission. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20190-20197.	3.3	53
57	Zika Virus NS2A-Mediated Virion Assembly. MBio, 2019, 10, .	1.8	51
58	A trans-complementation system for SARS-CoV-2 recapitulates authentic viral replication without virulence. Cell, 2021, 184, 2229-2238.e13.	13.5	51
59	Determinants of Dengue Virus NS4A Protein Oligomerization. Journal of Virology, 2015, 89, 6171-6183.	1.5	48
60	A Single-Dose Live-Attenuated Zika Virus Vaccine with Controlled Infection Rounds that Protects against Vertical Transmission. Cell Host and Microbe, 2018, 24, 487-499.e5.	5.1	46
61	A cDNA Clone-Launched Platform for High-Yield Production of Inactivated Zika Vaccine. EBioMedicine, 2017, 17, 145-156.	2.7	39
62	Remdesivir and GS-441524 Retain Antiviral Activity against Delta, Omicron, and Other Emergent SARS-CoV-2 Variants. Antimicrobial Agents and Chemotherapy, 2022, 66, e0022222.	1.4	39
63	Fragile X mental retardation protein is a Zika virus restriction factor that is antagonized by subgenomic flaviviral RNA. ELife, 2018, 7, .	2.8	37
64	A single-dose plasmid-launched live-attenuated Zika vaccine induces protective immunity. EBioMedicine, 2018, 36, 92-102.	2.7	37
65	Key Metabolic Enzymes Involved in Remdesivir Activation in Human Lung Cells. Antimicrobial Agents and Chemotherapy, 2021, 65, e0060221.	1.4	37
66	The effect of SARS-CoV-2 D614G mutation on BNT162b2 vaccine-elicited neutralization. Npj Vaccines, 2021, 6, 44.	2.9	36
67	Ultrapotent miniproteins targeting the SARS-CoV-2 receptor-binding domain protect against infection and disease. Cell Host and Microbe, 2021, 29, 1151-1161.e5.	5.1	36
68	A self-amplifying mRNA SARS-CoV-2 vaccine candidate induces safe and robust protective immunity in preclinical models. Molecular Therapy, 2022, 30, 1897-1912.	3.7	33
69	Genetic and biochemical characterizations of Zika virus NS2A protein. Emerging Microbes and Infections, 2019, 8, 585-602.	3.0	32
70	Maternal vaccination and protective immunity against Zika virus vertical transmission. Nature Communications, 2019, 10, 5677.	5.8	32
71	Neutralization of Omicron sublineages and Deltacron SARS-CoV-2 by three doses of BNT162b2 vaccine or BA.1 infection. Emerging Microbes and Infections, 2022, 11, 1828-1832.	3.0	32
72	Restriction of Zika Virus by Host Innate Immunity. Cell Host and Microbe, 2016, 19, 566-567.	5.1	27

#	Article	IF	CITATIONS
73	Role of microglia in the dissemination of Zika virus from mother to fetal brain. PLoS Neglected Tropical Diseases, 2020, 14, e0008413.	1.3	27
74	A PCR amplicon-based SARS-CoV-2 replicon for antiviral evaluation. Scientific Reports, 2021, 11, 2229.	1.6	27
75	Design, Synthesis, and Biological Evaluation of Substituted 4,6-Dihydrospiro[[1,2,3]triazolo[4,5- <i>b</i>)pyridine-7,3′-indoline]-2′,5(3 <i>H</i>)-dione Analogues as Potent NS4B Inhibitors for the Treatment of Dengue Virus Infection. Journal of Medicinal Chemistry, 2019, 62, 7941-7960.	2.9	26
76	Small Molecules and Antibodies for Zika Therapy. Journal of Infectious Diseases, 2017, 216, S945-S950.	1.9	23
77	Allosteric inhibitors of the main protease of SARS-CoV-2. Antiviral Research, 2022, 205, 105381.	1.9	23
78	Using recombination-dependent lethal mutations to stabilize reporter flaviviruses for rapid serodiagnosis and drug discovery. EBioMedicine, 2020, 57, 102838.	2.7	22
79	Cross-neutralization of Omicron BA.1 against BA.2 and BA.3 SARS-CoV-2. Nature Communications, 2022, 13, .	5.8	22
80	A cocrystal structure of dengue capsid protein in complex of inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17992-18001.	3.3	18
81	Identifying optimal capsid duplication length for the stability of reporter flaviviruses. Emerging Microbes and Infections, 2020, 9, 2256-2265.	3.0	17
82	Topoisomerase III- \hat{I}^2 is required for efficient replication of positive-sense RNA viruses. Antiviral Research, 2020, 182, 104874.	1.9	17
83	The RNA helicase DHX16 recognizes specific viral RNA to trigger RIG-l-dependent innate antiviral immunity. Cell Reports, 2022, 38, 110434.	2.9	16
84	Using a Virion Assembly-Defective Dengue Virus as a Vaccine Approach. Journal of Virology, 2018, 92, .	1.5	13
85	Evaluation of a SARS-CoV-2 lateral flow assay using the plaque reduction neutralization test. Diagnostic Microbiology and Infectious Disease, 2021, 99, 115248.	0.8	13
86	Generation and characterization of mouse monoclonal antibodies against NS4B protein of dengue virus. Virology, 2014, 450-451, 250-257.	1.1	12
87	Reverse Genetics of Zika Virus. Methods in Molecular Biology, 2017, 1602, 47-58.	0.4	10
88	The arrival of SARS-CoV-2–neutralizing antibodies in a currently available commercial immunoglobulin. Journal of Allergy and Clinical Immunology, 2022, 149, 1958-1959.	1.5	10
89	Potential Mechanisms for Enhanced Zika Epidemic and Disease. ACS Infectious Diseases, 2018, 4, 656-659.	1.8	9
90	Design, synthesis and biological evaluation of spiropyrazolopyridone derivatives as potent dengue virus inhibitors. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127162.	1.0	8

#	Article	IF	Citations
91	Making sense of spike D614G in SARS-CoV-2 transmission. Science China Life Sciences, 2021, 64, 1062-1067.	2.3	8
92	A Single-Round Infection Fluorescent SARS-CoV-2 Neutralization Test for COVID-19 Serological Testing at a Biosafety Level-2 Laboratory. Viruses, 2022, 14, 1211.	1.5	8
93	Inhibition of innate immune response ameliorates Zika virus-induced neurogenesis deficit in human neural stem cells. PLoS Neglected Tropical Diseases, 2021, 15, e0009183.	1.3	6
94	Anti-Zika virus RNAi in neural progenitor cells. Cell Research, 2019, 29, 261-262.	5.7	5
95	A modified porous silicon microparticle potentiates protective systemic and mucosal immunity for SARS-CoV-2 subunit vaccine. Translational Research, 2022, 249, 13-27.	2.2	5
96	Repurposing an HIV Drug for Zika Virus Therapy. Molecular Therapy, 2019, 27, 2064-2066.	3.7	4
97	BNT162b2-elicited neutralization of Delta plus, Lambda, Mu, B.1.1.519, and Theta SARS-CoV-2 variants. Npj Vaccines, 2022, 7, 41.	2.9	4
98	Infection Kinetics and Transmissibility of a Reanimated Dengue Virus Serotype 4 Identified Originally in Wild Aedes aegypti From Florida. Frontiers in Microbiology, 2021, 12, 734903.	1.5	3
99	Intravenous delivery of GS-441524 is efficacious in the African green monkey model of SARS-CoV-2 infection. Antiviral Research, 2022, 203, 105329.	1.9	2
100	A <i>Trans</i> -Complementation System for SARS-CoV-2. SSRN Electronic Journal, 0, , .	0.4	1
101	Dengue and Zika RNA-RNA Interactomes Reveal Virus Permissive and Restrictive Factors in Human Cells. SSRN Electronic Journal, 0, , .	0.4	0
102	Role of microglia in the dissemination of Zika virus from mother to fetal brain., 2020, 14, e0008413.		0
103	Role of microglia in the dissemination of Zika virus from mother to fetal brain., 2020, 14, e0008413.		0
104	Role of microglia in the dissemination of Zika virus from mother to fetal brain., 2020, 14, e0008413.		0
105	Role of microglia in the dissemination of Zika virus from mother to fetal brain., 2020, 14, e0008413.		0
106	Role of microglia in the dissemination of Zika virus from mother to fetal brain., 2020, 14, e0008413.		0
107	Role of microglia in the dissemination of Zika virus from mother to fetal brain., 2020, 14, e0008413.		0