
Gary L Bowlin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7620703/publications.pdf Version: 2024-02-01

CARY L ROWLIN

#	Article	IF	CITATIONS
1	Neutrophil Extracellular Traps: Inflammation and Biomaterial Preconditioning for Tissue Engineering. Tissue Engineering - Part B: Reviews, 2022, 28, 437-450.	4.8	9
2	Methods for Quantifying Neutrophil Extracellular Traps on Biomaterials. Methods in Molecular Biology, 2022, 2394, 727-742.	0.9	0
3	Near-field electrospinning of polydioxanone small diameter vascular graft scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 130, 105207.	3.1	3
4	Neutrophils in Biomaterial-Guided Tissue Regeneration: Matrix Reprogramming for Angiogenesis. Tissue Engineering - Part B: Reviews, 2021, 27, 95-106.	4.8	20
5	Near-Field Electrospinning and Melt Electrowriting of Biomedical Polymers—Progress and Limitations. Polymers, 2021, 13, 1097.	4.5	26
6	Electrospun Polydioxanone Loaded With Chloroquine Modulates Template-Induced NET Release and Inflammatory Responses From Human Neutrophils. Frontiers in Bioengineering and Biotechnology, 2021, 9, 652055.	4.1	4
7	Patients with COVID-19: in the dark-NETs of neutrophils. Cell Death and Differentiation, 2021, 28, 3125-3139.	11.2	189
8	Human neutrophil Fc ^î ³RIIIb regulates neutrophil extracellular trap release in response to electrospun polydioxanone biomaterials. Acta Biomaterialia, 2021, 130, 281-290.	8.3	6
9	Mechanical characterization and neutrophil NETs response of a novel hybrid geometry polydioxanone near-field electrospun scaffold. Biomedical Materials (Bristol), 2021, 16, 065002.	3.3	4
10	Characterization of Polydioxanone in Near-Field Electrospinning. Polymers, 2020, 12, 1.	4.5	276
11	Manuka Honey Reduces NETosis on an Electrospun Template Within a Therapeutic Window. Polymers, 2020, 12, 1430.	4.5	10
12	37/67â€laminin receptor facilitates neural crest cell migration during enteric nervous system development. FASEB Journal, 2020, 34, 10931-10947.	0.5	6
13	Manuka honey modulates the release profile of a dHL-60 neutrophil model under anti-inflammatory stimulation. Journal of Tissue Viability, 2020, 29, 91-99.	2.0	10
14	An atorvastatin calcium and poly(L-lactide-co-caprolactone) core-shell nanofiber-covered stent to treat aneurysms and promote reendothelialization. Acta Biomaterialia, 2020, 111, 102-117.	8.3	20
15	Electrospun Polydioxanone Templates Loaded with Chloroquine Modulate Template-Induced NET Release and the Inflammatory Response. Proceedings (mdpi), 2020, 78, .	0.2	0
16	Electrospun gelatin–arabinoxylan ferulate composite fibers for diabetic chronic wound dressing application. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 660-668.	3.4	14
17	Surface Area to Volume Ratio of Electrospun Polydioxanone Templates Regulates the Adsorption of Soluble Proteins from Human Serum. Bioengineering, 2019, 6, 78.	3.5	13
18	Manuka Honey Modulates the Inflammatory Behavior of a dHL-60 Neutrophil Model under the Cytotoxic Limit. International Journal of Biomaterials, 2019, 2019, 1-12.	2.4	28

GARY L BOWLIN

#	Article	IF	CITATIONS
19	The Effect of Manuka Honey on dHL-60 Cytokine, Chemokine, and Matrix-Degrading Enzyme Release under Inflammatory Conditions. Med One, 2019, 4, .	1.0	7
20	Design and Fabrication of a Biomimetic Vascular Scaffold Promoting in Situ Endothelialization and Tunica Media Regeneration. ACS Applied Bio Materials, 2018, 1, 833-844.	4.6	23
21	Localized Delivery of Cl-Amidine From Electrospun Polydioxanone Templates to Regulate Acute Neutrophil NETosis: A Preliminary Evaluation of the PAD4 Inhibitor for Tissue Engineering. Frontiers in Pharmacology, 2018, 9, 289.	3.5	13
22	Honey-Based Templates in Wound Healing and Tissue Engineering. Bioengineering, 2018, 5, 46.	3.5	104
23	Electrospun Template Architecture and Composition Regulate Neutrophil NETosis <i>In Vitro</i> and <i>In Vivo</i> . Tissue Engineering - Part A, 2017, 23, 1054-1063.	3.1	33
24	An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. International Journal of Energy Production and Management, 2017, 4, 55-68.	3.7	364
25	Breast epithelial cell infiltration in enhanced electrospun silk scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, E121-E131.	2.7	7
26	Fabrication, characterization, and <i>in vitro</i> evaluation of silver ontaining arabinoxylan foams as antimicrobial wound dressing. Journal of Biomedical Materials Research - Part A, 2016, 104, 2456-2465.	4.0	12
27	<i>In vitro</i> characterization of MG-63 osteoblast-like cells cultured on organic-inorganic lyophilized gelatin sponges for early bone healing. Journal of Biomedical Materials Research - Part A, 2016, 104, 2011-2019.	4.0	17
28	Modeling early stage bone regeneration with biomimetic electrospun fibrinogen nanofibers and adipose-derived mesenchymal stem cells. Electrospinning, 2016, 1, .	1.6	3
29	Electrospun silk fibroin/poly (L-lactide-ε-caplacton) graft with platelet-rich growth factor for inducing smooth muscle cell growth and infiltration. International Journal of Energy Production and Management, 2016, 3, 239-245.	3.7	19
30	The influence of platelet-rich plasma on myogenic differentiation. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, E239-E249.	2.7	32
31	Bioengineered silk scaffolds in 3D tissue modeling with focus on mammary tissues. Materials Science and Engineering C, 2016, 59, 1168-1180.	7.3	42
32	Fabrication and characterization of air-impedance electrospun polydioxanone templates. Electrospinning, 2015, 1, .	1.6	6
33	Electrospinning of PEGylated polyamidoamine dendrimer fibers. Materials Science and Engineering C, 2015, 56, 189-194.	7.3	9
34	Imaging, spectroscopy, mechanical, alignment and biocompatibility studies of electrospun medical grade polyurethane (Carbothaneâ,,¢ 3575A) nanofibers and composite nanofibers containing multiwalled carbon nanotubes. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 41, 189-198.	3.1	48
35	Poly(ester-ether)s: I. Investigation of the Properties of Blend Films of Polydioxanone and Poly(methyl) Tj ETQo	1 1 0.78431 3.4 	4 rgBT /Over
36	Platelet-Rich Plasma in Bone Regeneration: Engineering the Delivery for Improved Clinical Efficacy.	1.9	83

BioMed Research International, 2014, 2014, 1-15.

GARY L BOWLIN

#	Article	IF	CITATIONS
37	Imaging, spectroscopic, mechanical and biocompatibility studies of electrospun Tecoflex® EG 80A nanofibers and composites thereof containing multiwalled carbon nanotubes. Applied Surface Science, 2014, 321, 205-213.	6.1	17
38	Mammary epithelial cell adhesion, viability, and infiltration on blended or coated silk fibroin–collagen type I electrospun scaffolds. Materials Science and Engineering C, 2014, 43, 37-44.	7.3	44
39	A preliminary study on amelogenin-loaded electrospun scaffolds. Journal of Bioactive and Compatible Polymers, 2014, 29, 32-49.	2.1	4
40	Fabrication of cell penetration enhanced poly (l-lactic acid-co-É›-caprolactone)/silk vascular scaffolds utilizing air-impedance electrospinning. Colloids and Surfaces B: Biointerfaces, 2014, 120, 47-54.	5.0	32
41	Mineralization and Characterization of Composite Lyophilized Gelatin Sponges Intended for Early Bone Regeneration. Bioengineering, 2014, 1, 62-84.	3.5	10
42	Compression of Multilayered Composite Electrospun Scaffolds: A Novel Strategy to Rapidly Enhance Mechanical Properties and Three Dimensionality of Bone Scaffolds. Advances in Materials Science and Engineering, 2013, 2013, 1-9.	1.8	9
43	A Preliminary Evaluation of Lyophilized Gelatin Sponges, Enhanced with Platelet-Rich Plasma, Hydroxyapatite and Chitin Whiskers for Bone Regeneration. Cells, 2013, 2, 244-265.	4.1	34
44	An assessment of biopolymer―and synthetic polymerâ€based scaffolds for bone and vascular tissue engineering. Polymer International, 2013, 62, 523-533.	3.1	85
45	Mineralization Potential of Electrospun PDO-Hydroxyapatite-Fibrinogen Blended Scaffolds. International Journal of Biomaterials, 2012, 2012, 1-12.	2.4	21
46	A Preliminary Study on the Potential of Manuka Honey and Platelet-Rich Plasma in Wound Healing. International Journal of Biomaterials, 2012, 2012, 1-14.	2.4	68
47	Diblock Poly(ester)-Poly(ester-ether) Copolymers: I. Synthesis, Thermal Properties, and Degradation Kinetics. Industrial & Engineering Chemistry Research, 2012, 51, 12031-12040.	3.7	14
48	The incorporation and controlled release of plateletâ€rich plasmaâ€derived biomolecules from polymeric tissue engineering scaffolds. Polymer International, 2012, 61, 1703-1709.	3.1	6
49	Preparation of chitin nanofibril/polycaprolactone nanocomposite from a nonaqueous medium suspension. Carbohydrate Polymers, 2012, 87, 2313-2319.	10.2	51
50	Incorporating Platelet-Rich Plasma into Electrospun Scaffolds for Tissue Engineering Applications. Tissue Engineering - Part A, 2011, 17, 2723-2737.	3.1	94
51	Two pole air gap electrospinning: Fabrication of highly aligned, three-dimensional scaffolds for nerve reconstruction. Acta Biomaterialia, 2011, 7, 203-215.	8.3	136
52	Electrospun Collagen: A Tissue Engineering Scaffold with Unique Functional Properties in a Wide Variety of Applications. Journal of Nanomaterials, 2011, 2011, 1-15.	2.7	65
53	Evaluation of biological activity of bone morphogenetic proteins on exposure to commonly used electrospinning solvents. Journal of Bioactive and Compatible Polymers, 2011, 26, 578-589.	2.1	13
54	Feasibility of Electrospun Polydioxanone — Monocyte Chemotactic Protein-1 (MCP-1) Hybrid Scaffolds as Potential Cellular Homing Devices. Journal of Engineered Fibers and Fabrics, 2010, 5, 155892501000500.	1.0	3

GARY L BOWLIN

#	Article	IF	CITATIONS
55	The Use of Natural Polymers in Tissue Engineering: A Focus on Electrospun Extracellular Matrix Analogues. Polymers, 2010, 2, 522-553.	4.5	459
56	Electrospun Polydioxanone, Elastin, and Collagen Vascular Scaffolds: Uniaxial Cyclic Distension. Journal of Engineered Fibers and Fabrics, 2009, 4, 155892500900400.	1.0	8
57	Suture-reinforced electrospun polydioxanone–elastin small-diameter tubes for use in vascular tissue engineering: A feasibility study. Acta Biomaterialia, 2008, 4, 58-66.	8.3	115
58	Creating small diameter bioresorbable vascular grafts through electrospinning. Journal of Materials Chemistry, 2008, 18, 260-263.	6.7	36
59	A Novel Electrospun Dendrimer-Gelatin Hybrid Nanofiber Scaffold for Tissue Regeneration and Drug Delivery. Materials Research Society Symposia Proceedings, 2008, 1094, 1.	0.1	4
60	Immune Response Testing of Electrospun Polymers: An Important Consideration in the Evaluation of Biomaterials. Journal of Engineered Fibers and Fabrics, 2007, 2, 155892500700200.	1.0	6
61	Extracellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers. Polymer International, 2007, 56, 1349-1360.	3.1	187
62	Feasibility of Electrospinning the Globular Proteins Hemoglobin and Myoglobin. Journal of Engineered Fibers and Fabrics, 2006, 1, 155892500600100.	1.0	16
63	Thermal and Mechanical Characterization of Electrospun Blends of Poly(lactic acid) and Poly(glycolic acid). Polymer Journal, 2006, 38, 1137-1145.	2.7	52
64	Electrospinning polydioxanone for biomedical applications. Acta Biomaterialia, 2005, 1, 115-123.	8.3	267
65	Biomedical Nanoscience: Electrospinning Basic Concepts, Applications, and Classroom Demonstration. Materials Research Society Symposia Proceedings, 2004, 827, 171.	0.1	12
66	Electrospinning of Nanofiber Fibrinogen Structures. Nano Letters, 2003, 3, 213-216.	9.1	515
67	TAILORING TISSUE ENGINEERING SCAFFOLDS USING ELECTROSTATIC PROCESSING TECHNIQUES: A STUDY OF POLY(GLYCOLIC ACID) ELECTROSPINNING. Journal of Macromolecular Science - Pure and Applied Chemistry, 2001, 38, 1231-1243.	2.2	395
68	Determination of the Prime Electrostatic Endothelial Cell Transplantation Procedure for e-PTFE Vascular Prostheses. Cell Transplantation, 2000, 9, 337-348.	2.5	6