
Chun-Hui Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7619049/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional Reuniens and Rhomboid Nuclei Are Required for Proper Acquisition and Expression of Cued and Contextual Fear in Trace Fear Conditioning. International Journal of Neuropsychopharmacology, 2022, 25, 319-327.	2.1	4
2	Analysis of collateral projections from the lateral orbitofrontal cortex to nucleus accumbens and basolateral amygdala in rats. Journal of Neurophysiology, 2022, 127, 1535-1546.	1.8	2
3	Medial or lateral orbitofrontal cortex activation during fear extinction differentially regulates fear renewal. Behavioural Brain Research, 2021, 412, 113412.	2.2	8
4	Activation of medial orbitofrontal cortex abolishes fear extinction and interferes with fear expression in rats. Neurobiology of Learning and Memory, 2020, 169, 107170.	1.9	13
5	The Reuniens and Rhomboid Nuclei Are Required for Acquisition of Pavlovian Trace Fear Conditioning in Rats. ENeuro, 2020, 7, ENEURO.0106-20.2020.	1.9	21
6	Adaptive anxious states and down-regulation of dopamine activity under amygdala activation in rats. Behavioural Brain Research, 2019, 361, 1-6.	2.2	6
7	Pharmacological activation of the lateral orbitofrontal cortex on regulation of learned fear and extinction. Neurobiology of Learning and Memory, 2018, 148, 30-37.	1.9	12
8	Inhibitory Modulation of Orbitofrontal Cortex on Medial Prefrontal Cortex–Amygdala Information Flow. Cerebral Cortex, 2018, 28, 1-8.	2.9	35
9	Lateral Orbitofrontal Cortical Modulation on the Medial Prefrontal Cortex-Amygdala Pathway: Differential Regulation of Intra-Amygdala GABAA and GABAB Receptors. International Journal of Neuropsychopharmacology, 2017, 20, 602-610.	2.1	3
10	Inhibitory modulation of medial prefrontal cortical activation on lateral orbitofrontal cortex–amygdala information flow. Journal of Physiology, 2017, 595, 6065-6076.	2.9	5
11	Dopaminergic Modulation of Lateral Amygdala Neuronal Activity: Differential D1 and D2 Receptor Effects on Thalamic and Cortical Afferent Inputs. International Journal of Neuropsychopharmacology, 2015, 18, pyv015-pyv015.	2.1	15
12	Amygdala-Ventral Pallidum Pathway Decreases Dopamine Activity After Chronic Mild Stress in Rats. Biological Psychiatry, 2014, 76, 223-230.	1.3	181
13	Some dopamine neurons may be more impulsive than others: Why differences in receptors and transporters can affect dopamine function in Parkinson's disease. Movement Disorders, 2013, 28, 1319-1320.	3.9	2
14	Amygdala Î ² -Noradrenergic Receptors Modulate Delayed Downregulation of Dopamine Activity following Restraint. Journal of Neuroscience, 2013, 33, 1441-1450.	3.6	37
15	Medial prefrontal cortex activation facilitates re-extinction of fear in rats. Learning and Memory, 2011, 18, 221-225.	1.3	51
16	Strain difference in the effect of infralimbic cortex lesions on fear extinction in rats Behavioral Neuroscience, 2010, 124, 391-397.	1.2	49
17	Single-Unit Activity in the Medial Prefrontal Cortex during Immediate and Delayed Extinction of Fear in Rats. PLoS ONE, 2010, 5, e11971.	2.5	96
18	Early extinction after fear conditioning yields a context-independent and short-term suppression of conditional freezing in rats. Learning and Memory, 2009, 16, 62-68.	1.3	54

CHUN-HUI CHANG

#	Article	IF	CITATIONS
19	Fear Extinction in Rodents. Current Protocols in Neuroscience, 2009, 47, Unit8.23.	2.6	46
20	Bidirectional Changes in the Intrinsic Excitability of Infralimbic Neurons Reflect a Possible Regulatory Role in the Acquisition and Extinction of Pavlovian Conditioned Fear. Journal of Neuroscience, 2008, 28, 7245-7247.	3.6	3
21	Involvement of the Amygdala in Two Different Forms of the Inhibitory Avoidance Task. , 2008, , 167-182.		0
22	Recent fear is resistant to extinction. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18020-18025.	7.1	167
23	Electrolytic lesions of the medial prefrontal cortex do not interfere with long-term memory of extinction of conditioned fear. Learning and Memory, 2006, 13, 14-17.	1.3	67
24	Inhibitory avoidance learning altered ensemble activity of amygdaloid neurons in rats. European Journal of Neuroscience, 2005, 21, 210-218.	2.6	19