
Mauro Serafini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7618885/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional properties of edible insects: a systematic review. Nutrition Research Reviews, 2023, 36, 98-119.	2.1	11
2	Editorial: Edible Insects: From Farm to Fork. Frontiers in Nutrition, 2022, 9, 843302.	1.6	1
3	Endothelial Progenitor Cell Levels and Extent of Post-prandial Lipemic Response. Frontiers in Nutrition, 2022, 9, 822131.	1.6	1
4	Early Dinner Time and Caloric Restriction Lapse Contribute to the Longevity of Nonagenarians and Centenarians of the Italian Abruzzo Region: A Cross-Sectional Study. Frontiers in Nutrition, 2022, 9, 863106.	1.6	3
5	Dlet and Health From reGistered Trials on ClinicalTrials.gov: The DIGIT Study. Frontiers in Nutrition, 2022, 9, 870776.	1.6	1
6	Dietary antioxidants, non-enzymatic antioxidant capacity and the risk of osteoarthritis in the Swedish National March Cohort. European Journal of Nutrition, 2021, 60, 169-178.	1.8	10
7	Goals in Nutrition Science 2020-2025. Frontiers in Nutrition, 2021, 7, 606378.	1.6	20
8	Dietary Modulation of Oxidative Stress From Edible Insects: A Mini-Review. Frontiers in Nutrition, 2021, 8, 642551.	1.6	27
9	Roles and competencies in the nutritional domain for the management of the metabolic diseases and in the hospital setting: A position paper of the Italian College of Academic Nutritionists, MED-49 (ICAN-49). Nutrition, Metabolism and Cardiovascular Diseases, 2021, 31, 2993-3003.	1.1	0
10	Breakfast Cereals Carrying Fibre-Related Claims: Do They Have a Better Nutritional Composition Than Those without Such Claims? Results from the Food Labelling of Italian Products (FLIP) Study. Foods, 2021, 10, 2225.	1.9	5
11	Dietary Antioxidants and the Risk of Parkinson Disease. Neurology, 2021, 96, e895-e903.	1.5	36
12	A Call to Action: Now Is the Time to Screen Elderly and Treat Osteosarcopenia, a Position Paper of the Italian College of Academic Nutritionists MED/49 (ICAN-49). Nutrients, 2020, 12, 2662.	1.7	10
13	Dietary non-enzymatic antioxidant capacity and risk of stroke: The Swedish Women's Lifestyle and Health Cohort. Nutrition, 2020, 73, 110723.	1.1	4
14	dLLME-μSPE extraction coupled to HPLC-ESI-MS/MS for the determination of F2α-IsoPs in human urine. Journal of Pharmaceutical and Biomedical Analysis, 2020, 186, 113302.	1.4	8
15	Plasma Non-Enzymatic Antioxidant Capacity (NEAC) in Relation to Dietary NEAC, Nutrient Antioxidants and Inflammation-Related Biomarkers. Antioxidants, 2020, 9, 301.	2.2	8
16	Iron-Dependent Trafficking of 5-Lipoxygenase and Impact on Human Macrophage Activation. Frontiers in Immunology, 2019, 10, 1347.	2.2	39
17	Antioxidant Activities in vitro of Water and Liposoluble Extracts Obtained by Different Species of Edible Insects and Invertebrates. Frontiers in Nutrition, 2019, 6, 106.	1.6	115
18	Metabolic Food Waste and Ecological Impact of Obesity in FAO World's Region. Frontiers in Nutrition, 2019, 6, 126.	1.6	22

#	Article	IF	CITATIONS
19	Higher Dietary Non-enzymatic Antioxidant Capacity Is Associated with Decreased Risk of All-Cause and Cardiovascular Disease Mortality in Japanese Adults. Journal of Nutrition, 2019, 149, 1967-1976.	1.3	8
20	Relationship between dietary non-enzymatic antioxidant capacity and type 2 diabetes risk in the Japan Public Health Center-based Prospective Study. Nutrition, 2019, 66, 62-69.	1.1	8
21	Editorial: Immunonutrient Supplementation. Frontiers in Nutrition, 2019, 6, 182.	1.6	2
22	Dietary non enzymatic antioxidant capacity and the risk of myocardial infarction in the Swedish women's lifestyle and health cohort. European Journal of Epidemiology, 2018, 33, 213-221.	2.5	9
23	Effects of High Consumption of Vegetables on Clinical, Immunological, and Antioxidant Markers in Subjects at Risk of Cardiovascular Diseases. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-9.	1.9	11
24	Dietary non-enzymatic antioxidant capacity and the risk of myocardial infarction: the Swedish National March Cohort. International Journal of Epidemiology, 2018, 47, 1947-1955.	0.9	11
25	Redox Role of Lactobacillus casei Shirota Against the Cellular Damage Induced by 2,2′-Azobis (2-Amidinopropane) Dihydrochloride-Induced Oxidative and Inflammatory Stress in Enterocytes-Like Epithelial Cells. Frontiers in Immunology, 2018, 9, 1131.	2.2	30
26	The Validity and Reproducibility of Dietary Non-enzymatic Antioxidant Capacity Estimated by Self-administered Food Frequency Questionnaires. Journal of Epidemiology, 2018, 28, 428-436.	1.1	4
27	Dietary antioxidant capacity and all-cause and cause-specific mortality in the E3N/EPIC cohort study. European Journal of Nutrition, 2017, 56, 1233-1243.	1.8	45
28	Bioactivity Improvement of Olea europaea Leaf Extract Biotransformed by Wickerhamomyces anomalus Enzymes. Plant Foods for Human Nutrition, 2017, 72, 211-218.	1.4	9
29	Antioxidants from black and green tea: from dietary modulation of oxidative stress to pharmacological mechanisms. British Journal of Pharmacology, 2017, 174, 1195-1208.	2.7	172
30	Dietary antioxidant capacity and risk for stroke in a prospective cohort study of Swedish men and women. Nutrition, 2017, 33, 234-239.	1.1	36
31	Functional Foods for Health: The Interrelated Antioxidant and Anti-Inflammatory Role of Fruits, Vegetables, Herbs, Spices and Cocoa in Humans. Current Pharmaceutical Design, 2017, 22, 6701-6715.	0.9	150
32	From Cocoa to Chocolate: The Impact of Processing on In Vitro Antioxidant Activity and the Effects of Chocolate on Antioxidant Markers In Vivo. Frontiers in Immunology, 2017, 8, 1207.	2.2	65
33	Effect of Dark Chocolate Extracts on Phorbol 12-Myristate 13-Acetate-Induced Oxidative Burst in Leukocytes Isolated by Normo-Weight and Overweight/Obese Subjects. Frontiers in Nutrition, 2017, 4, 23.	1.6	5
34	Editorial: Chocolate and Health: Friend or Foe?. Frontiers in Nutrition, 2017, 4, 67.	1.6	1
35	Unsustainability of Obesity: Metabolic Food Waste. Frontiers in Nutrition, 2016, 3, 40.	1.6	31
36	Dietary total antioxidant capacity and pancreatic cancer risk: an Italian case–control study. British Journal of Cancer, 2016, 115, 102-107.	2.9	25

#	Article	IF	CITATIONS
37	Prospective study of dietary Non Enzymatic Antioxidant Capacity on the risk of hip fracture in the elderly. Bone, 2016, 90, 31-36.	1.4	5
38	Heme Iron Intake, Dietary Antioxidant Capacity, and Risk of Colorectal Adenomas in a Large Cohort Study of French Women. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 640-647.	1.1	46
39	Dietary total antioxidant capacity in relation to endometrial cancer risk: a case–control study in Italy. Cancer Causes and Control, 2016, 27, 425-431.	0.8	14
40	Synbiotics. , 2016, , 567-574.		3
41	Non enzymatic browning during cocoa roasting as affected by processing time and temperature. Journal of Food Engineering, 2016, 169, 44-52.	2.7	68
42	Flavonoids and Immune Function in Human: A Systematic Review. Critical Reviews in Food Science and Nutrition, 2015, 55, 383-395.	5.4	126
43	Effect of cocoa products and flavanols on platelet aggregation in humans: a systematic review. Food and Function, 2015, 6, 2128-2134.	2.1	14
44	Postoperative atrial fibrillation and total dietary antioxidant capacity in patients undergoing cardiac surgery: The Polyphemus Observational Study. Journal of Thoracic and Cardiovascular Surgery, 2015, 149, 1175-1182.e1.	0.4	24
45	Non-enzymatic antioxidant capacity and risk of gastric cancer. Cancer Epidemiology, 2015, 39, 340-345.	0.8	14
46	Flavanols, proanthocyanidins and antioxidant activity changes during cocoa (Theobroma cacao L.) roasting as affected by temperature and time of processing. Food Chemistry, 2015, 174, 256-262.	4.2	126
47	Association of flavonoid-rich foods and statins in the management of hypercholesterolemia: a dangerous or helpful combination?. Current Drug Metabolism, 2015, 16, 833-846.	0.7	14
48	Prevention of Postprandial Metabolic Stress in Humans: Role of Fruit- Derived Products. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2015, 15, 46-53.	0.6	10
49	Antioxidant Modulation of F2-Isoprostanes in Humans: A Systematic Review. Critical Reviews in Food Science and Nutrition, 2014, 54, 1202-1221.	5.4	22
50	Fruit juice drinks prevent endogenous antioxidant response to high-fat meal ingestion. British Journal of Nutrition, 2014, 111, 294-300.	1.2	38
51	Fruit Polyphenols and Postprandial Inflammatory Stress. , 2014, , 1107-1126.		6
52	Dietary non-enzymatic antioxidant capacity and the risk of myocardial infarction: A case-control study in Italy. Nutrition, Metabolism and Cardiovascular Diseases, 2014, 24, 1246-1251.	1.1	17
53	Effect of Plasma Uric Acid on Antioxidant Capacity, Oxidative Stress, and Insulin Sensitivity in Obese Subjects. Diabetes, 2014, 63, 976-981.	0.3	172
54	Matrix effect in F2-isoprostanes quantification by HPLC–MS/MS: A validated method for analysis of iPF2α-III and iPF2α-VI in human urine. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 965, 100-106.	1.2	8

#	Article	IF	CITATIONS
55	Response to Comment on Fabbrini et al. Effect of Plasma Uric Acid on Antioxidant Capacity, Oxidative Stress, and Insulin Sensitivity in Obese Subjects. Diabetes 2014;63:976-981. Diabetes, 2014, 63, e19-e19.	0.3	3
56	Consumption of Mixed Fruit-juice Drink and Vitamin C Reduces Postprandial Stress Induced by a High Fat Meal in Healthy Overweight Subjects. Current Pharmaceutical Design, 2014, 20, 1020-1024.	0.9	44
57	Effect of flavonoids on circulating levels of TNF-α and IL-6 in humans: A systematic review and meta-analysis. Molecular Nutrition and Food Research, 2013, 57, 784-801.	1.5	65
58	Dietary total antioxidant capacity and colorectal cancer: A large case-control study in Italy. International Journal of Cancer, 2013, 133, 1447-1451.	2.3	54
59	Antioxidant and inflammatory response following high-fat meal consumption in overweight subjects. European Journal of Nutrition, 2013, 52, 1107-1114.	1.8	40
60	Mediterranean diet and non enzymatic antioxidant capacity in the PREDIMED study: Evidence for a mechanism of antioxidant tuning. Nutrition, Metabolism and Cardiovascular Diseases, 2013, 23, 1167-1174.	1.1	90
61	A new flow cytometry method to measure oxidative status: The Peroxidation of Leukocytes Index Ratio (PLIR). Journal of Immunological Methods, 2013, 390, 113-120.	0.6	15
62	Functional foods and nutraceuticals as therapeutic tools for the treatment of diet-related diseases. Canadian Journal of Physiology and Pharmacology, 2013, 91, 387-396.	0.7	79
63	Dietary flavonoid, lignan and antioxidant capacity and risk of hepatocellular carcinoma in the European prospective investigation into cancer and nutrition study. International Journal of Cancer, 2013, 133, 2429-2443.	2.3	65
64	Flavonoids and immune function. , 2013, , 379-415.		3
65	Effect of plant foods and beverages on plasma non-enzymatic antioxidant capacity in human subjects: a meta-analysis. British Journal of Nutrition, 2013, 109, 1544-1556.	1.2	65
66	High Fat Meal Increase of IL-17 is Prevented by Ingestion of Fruit Juice Drink in Healthy Overweight Subjects. Current Pharmaceutical Design, 2012, 18, 85-90.	0.9	51
67	Oxidative Stress in Atherosclerosis Development: The Central Role of LDL and Oxidative Burst. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2012, 12, 351-360.	0.6	179
68	Cardiovascular effects of flavanol-rich chocolate in patients with heart failure. European Heart Journal, 2012, 33, 2172-2180.	1.0	104
69	Total dietary antioxidant capacity and lung function in an Italian population: a favorable role in premenopausal/never smoker women. European Journal of Clinical Nutrition, 2012, 66, 61-68.	1.3	30
70	Dietary total antioxidant capacity and gastric cancer risk in the European prospective investigation into cancer and nutrition study. International Journal of Cancer, 2012, 131, E544-54.	2.3	73
71	Effect of ingestion of dark chocolates with similar lipid composition and different cocoa content on antioxidant and lipid status in healthy humans. Food Chemistry, 2012, 132, 1305-1310.	4.2	15
72	Effect of acute consumption of oolong tea on antioxidant parameters in healthy individuals. Food Chemistry, 2012, 132, 2102-2106.	4.2	17

#	Article	IF	CITATIONS
73	Lymphocytes as internal standard in oxidative burst analysis by cytometry: A new data analysis approach. Journal of Immunological Methods, 2012, 379, 61-65.	0.6	10
74	The Role of Polyphenols in the Modulation of Plasma Non-Enzymatic Antioxidant Capacity (NEAC). International Journal for Vitamin and Nutrition Research, 2012, 82, 228-232.	0.6	12
75	The Biological Relevance of Direct Antioxidant Effects of Polyphenols for Cardiovascular Health in Humans Is Not Established1–4. Journal of Nutrition, 2011, 141, 989S-1009S.	1.3	328
76	Health Benefits of Tea. Oxidative Stress and Disease, 2011, , 239-261.	0.3	25
77	Compliance, tolerability and safety of two antioxidant-rich diets: a randomised controlled trial in male smokers. British Journal of Nutrition, 2011, 106, 557-571.	1.2	13
78	Dietary quercetin intake and risk of gastric cancer: results from a population-based study in Sweden. Annals of Oncology, 2011, 22, 438-443.	0.6	93
79	Modulation of Plasma Non Enzimatic Antioxidant Capacity (NEAC) by Plant Foods: the Role of Polyphenol. Current Topics in Medicinal Chemistry, 2011, 11, 1821-1846.	1.0	46
80	Bilberry juice modulates plasma concentration of NF-κB related inflammatory markers in subjects at increased risk of CVD. European Journal of Nutrition, 2010, 49, 345-355.	1.8	177
81	Hsp70 expression and induction as a readout for detection of immune modulatory components in food. Cell Stress and Chaperones, 2010, 15, 25-37.	1.2	36
82	Biomarkers of antioxidant status following ingestion of green teas at different polyphenol concentrations and antioxidant capacity in human volunteers. Molecular Nutrition and Food Research, 2010, 54, S278-83.	1.5	31
83	Oxidative activity of some iron compounds on colon tissue homogenates from mice after administration of green tea, white tea and Pelargonium purpureum. Food Chemistry, 2010, 120, 895-901.	4.2	8
84	Unfermented and fermented rooibos teas (Aspalathus linearis) increase plasma total antioxidant capacity in healthy humans. Food Chemistry, 2010, 123, 679-683.	4.2	40
85	Flavonoids as anti-inflammatory agents. Proceedings of the Nutrition Society, 2010, 69, 273-278.	0.4	468
86	Inflammatory Disease Processes and Interactions with Nutrition. British Journal of Nutrition, 2009, 101, 1-45.	1.2	346
87	Green tea, white tea, and Pelargonium purpureum increase the antioxidant capacity of plasma and some organs in mice. Nutrition, 2009, 25, 453-458.	1.1	59
88	Antioxidant activity of blueberry fruit is impaired by association with milk. Free Radical Biology and Medicine, 2009, 46, 769-774.	1.3	101
89	Absorption, metabolism and excretion of Choladi green tea flavanâ€3â€ols by humans. Molecular Nutrition and Food Research, 2009, 53, S44-53.	1.5	190
90	Chocolate, Lifestyle, and Health. Critical Reviews in Food Science and Nutrition, 2009, 49, 299-312.	5.4	78

#	Article	IF	CITATIONS
91	Redox ingredients for oxidative stress prevention: the unexplored potentiality of coffee. Clinics in Dermatology, 2009, 27, 225-229.	0.8	14
92	Effect of domestic cooking methods on the total antioxidant capacity of vegetables. International Journal of Food Sciences and Nutrition, 2009, 60, 12-22.	1.3	49
93	Milk decreases urinary excretion but not plasma pharmacokinetics of cocoa flavan-3-ol metabolites in humans. American Journal of Clinical Nutrition, 2009, 89, 1784-1791.	2.2	114
94	Bioavailability of <i>C</i> -Linked Dihydrochalcone and Flavanone Glucosides in Humans Following Ingestion of Unfermented and Fermented Rooibos Teas. Journal of Agricultural and Food Chemistry, 2009, 57, 7104-7111.	2.4	86
95	Bioavailability of Pelargonidin-3- <i>O</i> -glucoside and Its Metabolites in Humans Following the Ingestion of Strawberries with and without Cream. Journal of Agricultural and Food Chemistry, 2008, 56, 713-719.	2.4	167
96	Nutrition and inflammatory processes. Proceedings of the Nutrition Society, 2008, 67, .	0.4	3
97	The validity and reproducibility of food-frequency questionnaire–based total antioxidant capacity estimates in Swedish women. American Journal of Clinical Nutrition, 2008, 87, 1247-1253.	2.2	95
98	Role of the Antioxidant Network in the Prevention of Age-Related Diseases. , 2008, , 269-289.		1
99	Dark Chocolate Improves Coronary Vasomotion and Reduces Platelet Reactivity. Circulation, 2007, 116, 2376-2382.	1.6	215
100	The role of antioxidants in disease prevention. Medicine, 2006, 34, 533-535.	0.2	40
101	Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays. Molecular Nutrition and Food Research, 2006, 50, 1030-1038.	1.5	314
102	Back to the origin of the †antioxidant hypothesis': the lost role of the antioxidant network in disease prevention. Journal of the Science of Food and Agriculture, 2006, 86, 1989-1991.	1.7	15
103	Do flavan-3-ols from green tea reach the human brain?. Nutritional Neuroscience, 2006, 9, 57-61.	1.5	37
104	Redox Molecules and Cancer Prevention: The Importance of Understanding the Role of the Antioxidant Network. Nutrition and Cancer, 2006, 56, 232-240.	0.9	65
105	Effect of changes in fruit and vegetable intake on plasma antioxidant defenses in humans. American Journal of Clinical Nutrition, 2005, 81, 531-532.	2.2	12
106	Peroxynitrite-Dependent Upregulation of Src Kinases in Red Blood Cells: Strategies to Study the Activation Mechanisms. Methods in Enzymology, 2005, 396, 215-229.	0.4	12
107	Total antioxidant capacity of the diet is inversely and independently related to plasma concentration of high-sensitivity C-reactive protein in adult Italian subjects. British Journal of Nutrition, 2005, 93, 619-625.	1.2	185
108	Understanding the association between dietary antioxidants, redox status and disease: is the Total Antioxidant Capacity the right tool?. Redox Report, 2004, 9, 145-152.	1.4	294

#	Article	IF	CITATIONS
109	Effect on rat arterial blood pressure of chemically generated peroxyl radicals and protection by antioxidants. Journal of Nutritional Biochemistry, 2004, 15, 323-327.	1.9	8
110	Plasma antioxidants from chocolate. Nature, 2003, 424, 1013-1013.	13.7	484
111	Milk and absorption of dietary flavanols. Nature, 2003, 426, 788-788.	13.7	22
112	Rapid Fluorimetric Method to Detect Total Plasma Malondialdehyde with Mild Derivatization Conditions. Clinical Chemistry, 2003, 49, 690-692.	1.5	59
113	Total Antioxidant Capacity of Plant Foods, Beverages and Oils Consumed in Italy Assessed by Three Different In Vitro Assays. Journal of Nutrition, 2003, 133, 2812-2819.	1.3	1,118
114	Total antioxidant potential of fruit and vegetables and risk of gastric cancer. Gastroenterology, 2002, 123, 985-991.	0.6	263
115	Effect of acute ingestion of fresh and stored lettuce (Lactuca sativa) on plasma total antioxidant capacity and antioxidant levels in human subjects. British Journal of Nutrition, 2002, 88, 615-623.	1.2	111
116	Mechanism of vitamin E inhibition of cyclooxygenase activity in macrophages from old mice: role of peroxynitrite. Free Radical Biology and Medicine, 2002, 32, 503-511.	1.3	99
117	TOTAL ANTIOXIDANT CAPACITY AS A TOOL TO ASSESS REDOX STATUS: CRITICAL VIEW AND EXPERIMENTAL DATA. , 2001, , 219-227.		4
118	Dietary antioxidant intake and the risk of cardia cancer and noncardia cancer of the intestinal and diffuse types: A population-based case-control study in Sweden. International Journal of Cancer, 2000, 87, 133-140.	2.3	153
119	High-Performance Liquid Chromatography with Coulometric Electrode Array Detector for the Determination of Quercetin Levels in Cells of the Immune System. Analytical Biochemistry, 2000, 284, 296-300.	1.1	51
120	Inhibition of human LDL lipid peroxidation by phenol-rich beverages and their impact on plasma total antioxidant capacity in humans. Journal of Nutritional Biochemistry, 2000, 11, 585-590.	1.9	132
121	Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radical Biology and Medicine, 2000, 29, 1106-1114.	1.3	836
122	In vitro supplementation with different tocopherol homologues can affect the function of immune cells in old mice. Free Radical Biology and Medicine, 2000, 28, 643-651.	1.3	57
123	Dietary vitamin E and T cellâ€mediated function in the elderly: effectiveness and mechanism of action. International Journal of Developmental Neuroscience, 2000, 18, 401-410.	0.7	56
124	Dietary antioxidant intake and the risk of cardia cancer and noncardia cancer of the intestinal and diffuse types: A population-based case-control study in Sweden. , 2000, 87, 133.		7
125	Dietary antioxidant intake and the risk of cardia cancer and noncardia cancer of the intestinal and diffuse types: a population-based case-control study in Sweden. International Journal of Cancer, 2000, 87, 133-40.	2.3	39
126	Alcohol-Free Red Wine Enhances Plasma Antioxidant Capacity in Humans. Journal of Nutrition, 1998, 128, 1003-1007.	1.3	359

#	Article	IF	CITATIONS
127	Plasma (carotenoids, retinol, α-tocopherol) and tissue (carotenoids) levels after supplementation with β-carotene in subjects with precancerous and cancerous lesions of sigmoid colon. European Journal of Clinical Nutrition, 1997, 51, 661-666.	1.3	27
128	Effect of Ethanol on Red Wine Tanninâ^'Protein (BSA) Interactions. Journal of Agricultural and Food Chemistry, 1997, 45, 3148-3151.	2.4	81
129	Application of a new high-performance liquid chromatographic method for measuring selected polyphenols in human plasma. Biomedical Applications, 1997, 692, 311-317.	1.7	80
130	In vivo antioxidant effect of green and black tea in man. European Journal of Clinical Nutrition, 1996, 50, 28-32.	1.3	365
131	A fluorescence-based method for measuring total plasma antioxidant capability. Free Radical Biology and Medicine, 1995, 18, 29-36.	1.3	384
132	New approaches for measuring plasma or serum antioxidant capacity: A methodological note. Free Radical Biology and Medicine, 1994, 16, 135.	1.3	22
133	Red wine, tea, and antioxidants. Lancet, The, 1994, 344, 626.	6.3	123