Jonathan S Marchant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/761867/publications.pdf

Version: 2024-02-01

124 papers 5,058 citations

39 h-index 102432 66 g-index

130 all docs

130 does citations

130 times ranked

3964 citing authors

#	Article	IF	Citations
1	NAADP-binding proteins find their identity. Trends in Biochemical Sciences, 2022, 47, 235-249.	3.7	15
2	The ins and outs of virus trafficking through acidic Ca2+ stores. Cell Calcium, 2022, 102, 102528.	1.1	8
3	Identification of a dihydropyridine scaffold that blocks ryanodine receptors. IScience, 2022, 25, 103706.	1.9	2
4	Activation of endo-lysosomal two-pore channels by NAADP and PI(3,5)P2. Five things to know Cell Calcium, 2022, 103, 102543.	1.1	10
5	Inhibition of vitamin C transport impairs neuronal differentiation of hiPSCs. FASEB Journal, 2022, 36, .	0.2	O
6	EnteropathogenicÂEscherichia coliÂInfection Inhibits Intestinal Ascorbic Acid Uptake via Dysregulation of Its Transporter Expression. Digestive Diseases and Sciences, 2021, 66, 2250-2260.	1.1	11
7	Chemo-enzymatic synthesis of adenine substituted nicotinic acid adenine dinucleotide phosphate (NAADP) analogs. Bioorganic and Medicinal Chemistry, 2021, 30, 115901.	1.4	3
8	Upregulation of Vitamin C Transporter Functional Expression in 5xFAD Mouse Intestine. Nutrients, 2021, 13, 617.	1.7	3
9	Essential requirement for JPT2 in NAADP-evoked Ca ²⁺ signaling. Science Signaling, 2021, 14,	1.6	69
10	The sigma 1 receptor: A local media influencer. Cell Calcium, 2021, 97, 102430.	1.1	2
11	Effect of Lipopolysaccharide and TNF $\hat{l}\pm$ on Neuronal Ascorbic Acid Uptake. Mediators of Inflammation, 2021, 2021, 1-11.	1.4	7
12	NAADP receptors: A one-two Cell Calcium, 2021, 100, 102478.	1.1	3
13	Histone deacetylase inhibitors regulate vitamin C transporter functional expression in intestinal epithelial cells. Journal of Nutritional Biochemistry, 2021, 98, 108838.	1.9	7
14	Calsyntenin-3 interacts with the sodium-dependent vitamin C transporter-2 to regulate vitamin C uptake. International Journal of Biological Macromolecules, 2021, 192, 1178-1184.	3.6	5
15	Identification of novel modulators of a schistosome transient receptor potential channel targeted by praziquantel. PLoS Neglected Tropical Diseases, 2021, 15, e0009898.	1.3	15
16	Characterization of a new type of neuronal 5-HT G- protein coupled receptor in the cestode nervous system. PLoS ONE, 2021, 16, e0259104.	1.1	3
17	Mechanisms of SARS-CoV-2 neutralization by shark variable new antigen receptors elucidated through X-ray crystallography. Nature Communications, 2021, 12, 7325.	5.8	22
18	Genetic analysis of praziquantel response in schistosome parasites implicates a transient receptor potential channel. Science Translational Medicine, 2021, 13, eabj9114.	5.8	42

#	Article	IF	Citations
19	Mechanism of praziquantel action at a parasitic flatworm ion channel. Science Translational Medicine, 2021, 13, eabj5832.	5.8	47
20	The Journey to Discovering a Flatworm Target of Praziquantel: A Long TRP. Trends in Parasitology, 2020, 36, 182-194.	1.5	47
21	Ca ²⁺ Signaling and Regeneration. Cold Spring Harbor Perspectives in Biology, 2019, 11, a035485.	2.3	8
22	The synthesis and characterization of a clickable-photoactive NAADP analog active in human cells. Cell Calcium, 2019, 83, 102060.	1.1	7
23	TMEM33 regulates intracellular calcium homeostasis in renal tubular epithelial cells. Nature Communications, 2019, 10, 2024.	5.8	15
24	Probing Ca2+ release mechanisms using sea urchin egg homogenates. Methods in Cell Biology, 2019, 151, 445-458.	0.5	3
25	The anthelmintic drug praziquantel activates a schistosome transient receptor potential channel. Journal of Biological Chemistry, 2019, 294, 18873-18880.	1.6	81
26	MicroRNA-103a regulates sodium-dependent vitamin C transporter-1 expression in intestinal epithelial cells. Journal of Nutritional Biochemistry, 2019, 65, 46-53.	1.9	8
27	5-Azido-8-ethynyl-NAADP: A bifunctional, clickable photoaffinity probe for the identification of NAADP receptors. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1180-1188.	1.9	15
28	Enterotoxigenic <i>Escherichia coli</i> heat labile enterotoxin inhibits intestinal ascorbic acid uptake via a cAMP-dependent NF-κB-mediated pathway. American Journal of Physiology - Renal Physiology, 2019, 316, G55-G63.	1.6	8
29	MicroRNAâ€103a plays a role in regulating human sodiumâ€dependent vitamin C transporterâ€1 (hSVCT1) in intestinal epithelial cells. FASEB Journal, 2019, 33, 826.2.	0.2	0
30	Heterologous Protein Expression in the <i>Xenopus</i> Oocyte. Cold Spring Harbor Protocols, 2018, 2018, pdb.prot096990.	0.2	5
31	Inhibition of intestinal ascorbic acid uptake by lipopolysaccharide is mediated via transcriptional mechanisms. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 556-565.	1.4	44
32	Activation of host transient receptor potential (TRP) channels by praziquantel stereoisomers. PLoS Neglected Tropical Diseases, 2018, 12, e0006420.	1.3	19
33	Structure-activity profiling of alkaloid natural product pharmacophores against a Schistosoma serotonin receptor. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 550-558.	1.4	11
34	Tumor necrosis factor alpha reduces intestinal vitamin C uptake: a role for NF-κB-mediated signaling. American Journal of Physiology - Renal Physiology, 2018, 315, G241-G248.	1.6	46
35	NAADP-dependent Ca2+ signaling regulates Middle East respiratory syndrome-coronavirus pseudovirus translocation through the endolysosomal system. Cell Calcium, 2018, 75, 30-41.	1.1	93
36	A screening campaign in sea urchin egg homogenate as a platform for discovering modulators of NAADP-dependent Ca2+ signaling in human cells. Cell Calcium, 2018, 75, 42-52.	1.1	25

#	Article	IF	CITATIONS
37	Unique pharmacological properties of serotoninergic G-protein coupled receptors from cestodes. PLoS Neglected Tropical Diseases, 2018, 12, e0006267.	1.3	24
38	Coalescing beneficial host and deleterious antiparasitic actions as an antischistosomal strategy. ELife, $2018, 7, .$	2.8	12
39	Molecular mechanism(s) involved in differential expression of vitamin C transporters along the intestinal tract. American Journal of Physiology - Renal Physiology, 2017, 312, G340-G347.	1.6	20
40	The anthelmintic praziquantel is a human serotoninergic G-protein-coupled receptor ligand. Nature Communications, 2017, 8, 1910.	5.8	66
41	Utilizing the planarian voltage-gated ion channel transcriptome to resolve a role for a Ca 2+ channel in neuromuscular function and regeneration. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1036-1045.	1.9	17
42	Psychoactive Drugs as a Route to Development of Novel Antiâ€parasitic Agents. FASEB Journal, 2017, 31, .	0.2	0
43	A Miniaturized Screen of a Schistosoma mansoni Serotonergic G Protein-Coupled Receptor Identifies Novel Classes of Parasite-Selective Inhibitors. PLoS Pathogens, 2016, 12, e1005651.	2.1	30
44	Dataset for a Dugesia japonica de novo transcriptome assembly, utilized for defining the voltage-gated like ion channel superfamily. Data in Brief, 2016, 9, 1044-1047.	0.5	12
45	Pharmacological profiling an abundantly expressed schistosome serotonergic GPCR identifies nuciferine as a potent antagonist. International Journal for Parasitology: Drugs and Drug Resistance, 2016, 6, 364-370.	1.4	19
46	Kinetic profiling an abundantly expressed planarian serotonergic GPCR identifies bromocriptine as a perdurant antagonist. International Journal for Parasitology: Drugs and Drug Resistance, 2016, 6, 356-363.	1.4	17
47	Dysregulation of lysosomal morphology by pathogenic LRRK2 is corrected by two-pore channel 2 inhibition. Journal of Cell Science, 2015, 128, 232-8.	1.2	148
48	Two-pore channels at the intersection of endolysosomal membrane traffic. Biochemical Society Transactions, 2015, 43, 434-441.	1.6	54
49	Ergot Alkaloids (Re)generate New Leads as Antiparasitics. PLoS Neglected Tropical Diseases, 2015, 9, e0004063.	1.3	20
50	Modulation of Elementary Calcium Release Mediates a Transition from Puffs to Waves in an IP3R Cluster Model. PLoS Computational Biology, 2015, 11, e1003965.	1.5	25
51	TPC1 Knockout Knocks Out TPC1. Molecular and Cellular Biology, 2015, 35, 1882-1883.	1.1	5
52	The Two-pore channel (TPC) interactome unmasks isoform-specific roles for TPCs in endolysosomal morphology and cell pigmentation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13087-13092.	3.3	109
53	â€~Death and Axes': Unexpected Ca2+ Entry Phenologs Predict New Anti-schistosomal Agents. PLoS Pathogens, 2014, 10, e1003942.	2.1	38
54	Making Heads or Tails: Planarian Stem Cells in the Classroom. Journal of Microbiology and Biology Education, $2014, 15, 18-25$.	0.5	4

#	Article	IF	CITATIONS
55	Characterization of a flatworm inositol (1,4,5) trisphosphate receptor (IP3R) reveals a role in reproductive physiology. Cell Calcium, 2013, 53, 307-314.	1.1	1
56	Nuclear Microinjection to Assess How Heterologously Expressed Proteins Impact Ca2+Signals inXenopusOocytes. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot072785.	0.2	7
57	Glyoxalate reductase/hydroxypyruvate reductase interacts with the sodium-dependent vitamin C transporter-1 to regulate cellular vitamin C homeostasis. American Journal of Physiology - Renal Physiology, 2013, 304, G1079-G1086.	1.6	10
58	Ca2+ channels and praziquantel: A view from the free world. Parasitology International, 2013, 62, 619-628.	0.6	55
59	Modulation of Function of Sodium-Dependent Vitamin C Transporter 1 (SVCT1) by Rab8a in Intestinal Epithelial Cells: Studies Utilizing Caco-2 Cells and Rab8a Knockout Mice. Digestive Diseases and Sciences, 2013, 58, 641-649.	1.1	6
60	A Rapid Western Blotting Protocol for the <i>Xenopus</i> Oocyte. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot072793.	0.2	20
61	The <i>Xenopus</i> Oocyte: A Single-Cell Model for Studying Ca ²⁺ Signaling. Cold Spring Harbor Protocols, 2013, 2013, pdb.top066308.	0.2	12
62	Re-evaluation of the Role of Calcium Homeostasis Endoplasmic Reticulum Protein (CHERP) in Cellular Calcium Signaling. Journal of Biological Chemistry, 2013, 288, 355-367.	1.6	77
63	Questioning Regulation of Two-Pore Channels by NAADP. Messenger (Los Angeles, Calif: Print), 2013, 2, 113-119.	0.3	28
64	Mitochondrial Uptake of Thiamin Pyrophosphate: Physiological and Cell Biological Aspects. PLoS ONE, 2013, 8, e73503.	1.1	22
65	Photoaffinity Labeling of Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Targets in Mammalian Cells*. Journal of Biological Chemistry, 2012, 287, 2296-2307.	1.6	150
66	The Molecular Basis for Ca ² ⁺ Signalling by NAADP: Two-Pore Channels in a Complex?. Messenger (Los Angeles, Calif: Print), 2012, 1, 63-76.	0.3	22
67	Photoaffinity Labeling of High Affinity Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)-Binding Proteins in Sea Urchin Egg. Journal of Biological Chemistry, 2012, 287, 2308-2315.	1.6	110
68	Nicotinic Acid Adenine Dinucleotide 2 -Phosphate (NAADP) Binding Proteins in T-Lymphocytes. Messenger (Los Angeles, Calif: Print), 2012, 1, 86-94.	0.3	47
69	Inositol (1,4,5)-Trisphosphate Receptor Microarchitecture Shapes Ca2+ Puff Kinetics. Biophysical Journal, 2011, 100, 822-831.	0.2	16
70	Differential expression of human riboflavin transporters -1, -2, and -3 in polarized epithelia: A key role for hRFT-2 in intestinal riboflavin uptake. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 3016-3021.	1.4	50
71	Pharmacological and Functional Genetic Assays to Manipulate Regeneration of the Planarian & lt;em>Dugesia japonica. Journal of Visualized Experiments, 2011, , .	0.2	15
72	Role of cysteine residues in cell surface expression of the human riboflavin transporter-2 (hRFT2) in intestinal epithelial cells. American Journal of Physiology - Renal Physiology, 2011, 301, G100-G109.	1.6	27

#	Article	IF	CITATIONS
73	The endo-lysosomal system as an NAADP-sensitive acidic Ca2+ store: Role for the two-pore channels. Cell Calcium, 2011, 50, 157-167.	1.1	60
74	Opposing Roles of Voltage-Gated Ca ²⁺ Channels in Neuronal Control of Regenerative Patterning. Journal of Neuroscience, 2011, 31, 15983-15995.	1.7	47
75	Two-pore channels: Regulation by NAADP and customized roles in triggering calcium signals. Cell Calcium, 2010, 47, 480-490.	1.1	86
76	An Ancestral Deuterostome Family of Two-pore Channels Mediates Nicotinic Acid Adenine Dinucleotide Phosphate-dependent Calcium Release from Acidic Organelles. Journal of Biological Chemistry, 2010, 285, 2897-2901.	1.6	112
77	Molecular determinants dictating cell surface expression of the human sodium-dependent vitamin C transporter-2 in human liver cells. American Journal of Physiology - Renal Physiology, 2010, 298, G267-G274.	1.6	17
78	Localization and socialization: Experimental insights into the functional architecture of IP3 receptors. Chaos, 2009, 19, 037103.	1.0	14
79	Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling. Journal of Cell Biology, 2009, 186, 201-209.	2.3	376
80	Membrane targeting and intracellular trafficking of the human sodium-dependent multivitamin transporter in polarized epithelial cells. American Journal of Physiology - Cell Physiology, 2009, 296, C663-C671.	2.1	36
81	Dual Mechanisms of sHA 14-1 in Inducing Cell Death through Endoplasmic Reticulum and Mitochondria. Molecular Pharmacology, 2009, 76, 667-678.	1.0	47
82	A Novel Biological Activity of Praziquantel Requiring Voltage-Operated Ca2+ Channel \hat{l}^2 Subunits: Subversion of Flatworm Regenerative Polarity. PLoS Neglected Tropical Diseases, 2009, 3, e464.	1.3	101
83	Nuclear pore disassembly from endoplasmic reticulum membranes promotes Ca ²⁺ signalling competency. Journal of Physiology, 2008, 586, 2873-2888.	1.3	17
84	Molecular characterization of a novel cell surface ADP-ribosyl cyclase from the sea urchin. Cellular Signalling, 2008, 20, 2347-2355.	1.7	15
85	Timing in Cellular Ca2+ Signaling. Current Biology, 2008, 18, R769-R776.	1.8	52
86	Enhanced Ca2+ leak from ER Ca2+ stores induced by hepatitis C NS5A protein. Biochemical and Biophysical Research Communications, 2008, 368, 593-599.	1.0	20
87	N-Glycosylation is required for Na+-dependent vitamin C transporter functionality. Biochemical and Biophysical Research Communications, 2008, 374, 123-127.	1.0	42
88	Apical membrane targeting and trafficking of the human proton-coupled transporter in polarized epithelia. American Journal of Physiology - Cell Physiology, 2008, 294, C233-C240.	2.1	46
89	Cell biology of the human protonâ€coupled folate transporter (hPCFT) in renal epithelial MDCK cells. FASEB Journal, 2008, 22, 1156.2.	0.2	0
90	Tight junction targeting and intracellular trafficking of occludin in polarized epithelial cells. American Journal of Physiology - Cell Physiology, 2007, 293, C1717-C1726.	2.1	29

#	Article	IF	Citations
91	The inositol 1,4,5-trisphosphate receptor (ltpr) gene family in Xenopus: identification of type 2 and type 3 inositol 1,4,5-trisphosphate receptor subtypes. Biochemical Journal, 2007, 404, 383-391.	1.7	11
92	Targeting and intracellular trafficking of clinically relevant hTHTR1 mutations in human cell lines. Clinical Science, 2007, 113, 93-102.	1.8	11
93	Vitamin B1 (thiamine) uptake by human retinal pigment epithelial (ARPE-19) cells: mechanism and regulation. Journal of Physiology, 2007, 582, 73-85.	1.3	24
94	Molecular Characterization of a Novel Intracellular ADP-Ribosyl Cyclase. PLoS ONE, 2007, 2, e797.	1.1	29
95	Teaching genetics: A genomic science bootcamp. Biochemist, 2007, 29, 36-37.	0.2	1
96	Targeting and Trafficking of the Human Thiamine Transporter-2 in Epithelial Cells. Journal of Biological Chemistry, 2006, 281, 5233-5245.	1.6	37
97	Calcium Influx: Beyond â€~Current' Biology. Current Biology, 2006, 16, R548-R550.	1.8	2
98	Biotin-responsive basal ganglia disease-linked mutations inhibit thiamine transport via hTHTR2: biotin is not a substrate for hTHTR2. American Journal of Physiology - Cell Physiology, 2006, 291, C851-C859.	2.1	73
99	IP3 Receptor Activity Is Differentially Regulated in Endoplasmic Reticulum Subdomains during Oocyte Maturation. Current Biology, 2005, 15, 765-770.	1.8	41
100	Laterality in a non-visual sensory modality â€" the lateral line of fish. Current Biology, 2005, 15, R241-R242.	1.8	43
101	Cellular Signalling: STIMulating Calcium Entry. Current Biology, 2005, 15, R493-R495.	1.8	14
102	Improved "Optical Highlighter―Probes Derived from Discosoma Red Fluorescent Protein. Biophysical Journal, 2005, 88, 1444-1457.	0.2	12
103	A C-terminal Region Dictates the Apical Plasma Membrane Targeting of the Human Sodium-dependent Vitamin C Transporter-1 in Polarized Epithelia. Journal of Biological Chemistry, 2004, 279, 27719-27728.	1.6	64
104	Calcium-dependent Dephosphorylation Mediates the Hyperosmotic and Lysophosphatidic Acid-dependent Inhibition of Natriuretic Peptide Receptor-B/Guanylyl Cyclase-B. Journal of Biological Chemistry, 2004, 279, 48513-48519.	1.6	31
105	Expression and functional contribution of hTHTR-2 in thiamin absorption in human intestine. American Journal of Physiology - Renal Physiology, 2004, 286, G491-G498.	1.6	104
106	Cell Biology of the Human Thiamine Transporter-1 (hTHTR1). Journal of Biological Chemistry, 2003, 278, 3976-3984.	1.6	59
107	Polarized expression of members of the solute carrier SLC19A gene family of water-soluble multivitamin transporters: implications for physiological function. Biochemical Journal, 2003, 376, 43-48.	1.7	37
108	Intracellular Trafficking and Membrane Targeting Mechanisms of the Human Reduced Folate Carrier in Mammalian Epithelial Cells. Journal of Biological Chemistry, 2002, 277, 33325-33333.	1.6	40

#	Article	IF	Citations
109	Structural and functional relationships between Ca ²⁺ puffs and mitochondria in <i>Xenopus</i> oocytes. American Journal of Physiology - Cell Physiology, 2002, 282, C1374-C1386.	2.1	46
110	Intracellular trafficking/membrane targeting of human reduced folate carrier expressed in Xenopus oocytes. American Journal of Physiology - Renal Physiology, 2001, 281, G1477-G1486.	1.6	22
111	Role of elementary Ca2+ puffs in generating repetitive Ca2+ oscillations. EMBO Journal, 2001, 20, 65-76.	3.5	190
112	Multiphoton-evoked color change of DsRed as an optical highlighter for cellular and subcellular labeling. Nature Biotechnology, 2001, 19, 645-649.	9.4	92
113	Xenopus tropicalis oocytes as an advantageous model system for the study of intracellular Ca2+ signalling. British Journal of Pharmacology, 2001, 132, 1396-1410.	2.7	18
114	Functional Interactions in Ca2+ Signaling over Different Time and Distance Scales. Journal of General Physiology, 2000, 116, 691-696.	0.9	19
115	Acyclophostin: A Ribose-Modified Analog of Adenophostin A with High Affinity for Inositol 1,4,5-Trisphosphate Receptors and pH-Dependent Efficacy. Molecular Pharmacology, 1999, 55, 109-117.	1.0	26
116	Initiation of IP3-mediated Ca2+ waves in Xenopus oocytes. EMBO Journal, 1999, 18, 5285-5299.	3.5	138
117	A continuum of InsP3-mediated elementary Ca2+signalling events inXenopusoocytes. Journal of Physiology, 1998, 509, 67-80.	1.3	227
118	Activation and co-ordination of InsP3-mediated elementary Ca2+events during global Ca2+signals inXenopusoocytes. Journal of Physiology, 1998, 509, 81-91.	1.3	154
119	Rapid Activation and Partial Inactivation of Inositol Trisphosphate Receptors by Inositol Trisphosphateâ€. Biochemistry, 1998, 37, 11524-11533.	1.2	67
120	Kinetics of elementary Ca2+ puffs evoked in Xenopus oocytes by different Ins(1,4,5)P3 receptor agonists. Biochemical Journal, 1998, 334, 505-509.	1.7	25
121	Rapid kinetic measurements of 45Ca2+ mobilization reveal that lns(2,4,5)P3 is a partial agonist at hepatic InsP3 receptors. Biochemical Journal, 1997, 321, 573-576.	1.7	35
122	Disaccharide Polyphosphates Based upon Adenophostin A Activate Hepatic d-myo-Inositol 1,4,5-Trisphosphate Receptors. Biochemistry, 1997, 36, 12780-12790.	1.2	71
123	Cooperative activation of IP3 receptors by sequential binding of IP3 and Ca2+ safeguards against spontaneous activity. Current Biology, 1997, 7, 510-518.	1.8	150
124	Inhibitory actions of GABA on rabbit urinary bladder muscle strips: mediation by potassium channels. British Journal of Pharmacology, 1995, 115, 81-83.	2.7	13