Liangbing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7618629/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy and Environmental Science, 2019, 12, 322-333.	30.8	1,078
2	Li ⁺ intercalated V ₂ O ₅ · <i>n</i> H ₂ O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy and Environmental Science, 2018, 11, 3157-3162.	30.8	785
3	Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nature Nanotechnology, 2018, 13, 411-417.	31.5	584
4	High-Entropy Alloys as a Platform for Catalysis: Progress, Challenges, and Opportunities. ACS Catalysis, 2020, 10, 11280-11306.	11.2	308
5	Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst. Nature Communications, 2016, 7, 14036.	12.8	281
6	Mechanistic Insights of Zn ²⁺ Storage in Sodium Vanadates. Advanced Energy Materials, 2018, 8, 1801819.	19.5	225
7	Incorporating nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic activity toward CO2 hydrogenation. Nature Energy, 2017, 2, 869-876.	39.5	179
8	Supported Rhodium Catalysts for Ammonia–Borane Hydrolysis: Dependence of the Catalytic Activity on the Highest Occupied State of the Single Rhodium Atoms. Angewandte Chemie - International Edition, 2017, 56, 4712-4718.	13.8	173
9	Pt ₃ Co Octapods as Superior Catalysts of CO ₂ Hydrogenation. Angewandte Chemie - International Edition, 2016, 55, 9548-9552.	13.8	162
10	Copperâ€Based Plasmonic Catalysis: Recent Advances and Future Perspectives. Advanced Materials, 2021, 33, e2008145.	21.0	131
11	Pt Single Atoms Embedded in the Surface of Ni Nanocrystals as Highly Active Catalysts for Selective Hydrogenation of Nitro Compounds. Nano Letters, 2018, 18, 3785-3791.	9.1	127
12	Photocatalytic Conversion of Methane: Recent Advancements and Prospects. Angewandte Chemie - International Edition, 2022, 61, .	13.8	111
13	Aerobic Oxidation of Cyclohexane on Catalysts Based on Twinned and Single-Crystal Au ₇₅ Pd ₂₅ Bimetallic Nanocrystals. Nano Letters, 2015, 15, 2875-2880.	9.1	92
14	Integration of Quantum Confinement and Alloy Effect to Modulate Electronic Properties of RhW Nanocrystals for Improved Catalytic Performance toward CO ₂ Hydrogenation. Nano Letters, 2017, 17, 788-793.	9.1	91
15	Operando Oxygen Vacancies for Enhanced Activity and Stability toward Nitrogen Photofixation. Advanced Energy Materials, 2019, 9, 1902319.	19.5	88
16	Near-infrared light-driven photofixation of nitrogen over Ti3C2Tx/TiO2 hybrid structures with superior activity and stability. Applied Catalysis B: Environmental, 2020, 273, 119072.	20.2	86
17	Sulfur vacancy engineering of MoS2 via phosphorus incorporation for improved electrocatalytic N2 reduction to NH3. Applied Catalysis B: Environmental, 2022, 300, 120733.	20.2	85
18	Modulating oxygen coverage of Ti3C2Tx MXenes to boost catalytic activity for HCOOH dehydrogenation. Nature Communications, 2020, 11, 4251.	12.8	81

LIANGBING WANG

#	Article	IF	CITATIONS
19	Integration of Photothermal Effect and Heat Insulation to Efficiently Reduce Reaction Temperature of CO ₂ Hydrogenation. Small, 2017, 13, 1602583.	10.0	77
20	Ratio-Controlled Synthesis of CuNi Octahedra and Nanocubes with Enhanced Catalytic Activity. Journal of the American Chemical Society, 2015, 137, 14027-14030.	13.7	75
21	Cu-based nanocrystals on ZnO for uranium photoreduction: Plasmon-assisted activity and entropy-driven stability. Applied Catalysis B: Environmental, 2021, 288, 119978.	20.2	59
22	Fe Single-Atom Catalyst for Visible-Light-Driven Photofixation of Nitrogen Sensitized by Triphenylphosphine and Sodium Iodide. ACS Catalysis, 2020, 10, 5502-5510.	11.2	51
23	Anchoring Pt Single Atoms on Te Nanowires for Plasmonâ€Enhanced Dehydrogenation of Formic Acid at Room Temperature. Advanced Science, 2019, 6, 1900006.	11.2	49
24	Photocatalytic Conversion of Methane: Recent Advancements and Prospects. Angewandte Chemie, 2022, 134, e202108069.	2.0	46
25	Enhanced uranium photoreduction on Ti3C2Tx MXene by modulation of surface functional groups and deposition of plasmonic metal nanoparticles. Journal of Hazardous Materials, 2022, 426, 127823.	12.4	38
26	Large-scale and facile synthesis of a porous high-entropy alloy CrMnFeCoNi as an efficient catalyst. Journal of Materials Chemistry A, 2020, 8, 18318-18326.	10.3	37
27	Atomic-level insights in tuning defective structures for nitrogen photofixation over amorphous SmOCl nanosheets. Nano Energy, 2019, 65, 104003.	16.0	36
28	Porous CuFe for Plasmon-Assisted N ₂ Photofixation. ACS Energy Letters, 2020, 5, 2444-2451.	17.4	35
29	Atomic-level insights into the activation of nitrogen via hydrogen-bond interaction toward nitrogen photofixation. CheM, 2021, 7, 2118-2136.	11.7	33
30	Encapsulating Ag nanoparticles into ZIF-8 as an efficient strategy to boost uranium photoreduction without sacrificial agents. Journal of Materials Chemistry A, 2021, 9, 9809-9814.	10.3	30
31	Supported Rhodium Catalysts for Ammonia–Borane Hydrolysis: Dependence of the Catalytic Activity on the Highest Occupied State of the Single Rhodium Atoms. Angewandte Chemie, 2017, 129, 4790-4796.	2.0	27
32	Au atoms doped in Ti3C2Tx MXene: Benefiting recovery of oxygen vacancies towards photocatalytic aerobic oxidation. Nano Research, 2022, 15, 2862-2869.	10.4	25
33	Copper-Stabilized P′2-Type Layered Manganese Oxide Cathodes for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 58665-58673.	8.0	24
34	Pt ₃ Co Octapods as Superior Catalysts of CO ₂ Hydrogenation. Angewandte Chemie, 2016, 128, 9700-9704.	2.0	20
35	In2O3 Nanocrystals for CO2 Fixation: Atomic-Level Insight into the Role of Grain Boundaries. IScience, 2019, 16, 390-398.	4.1	14
36	Direct conversion of methane to methanol on boron nitride-supported copper single atoms. Nanoscale, 2022, 14, 5447-5453.	5.6	8

LIANGBING WANG

#	Article	IF	CITATIONS
37	Photocatalysis: Operando Oxygen Vacancies for Enhanced Activity and Stability toward Nitrogen Photofixation (Adv. Energy Mater. 43/2019). Advanced Energy Materials, 2019, 9, 1970170.	19.5	6
38	Conversion of Methane to Methanol on Cobalt-Embedded Graphene: A Theoretical Perspective. Catalysis Letters, 0, , 1.	2.6	5
39	Innentitelbild: Pt ₃ Co Octapods as Superior Catalysts of CO ₂ Hydrogenation (Angew. Chem. 33/2016). Angewandte Chemie, 2016, 128, 9594-9594.	2.0	1
40	An enzyme-mimicking inorganic catalyst for effective nitrogen photofixation. Chem Catalysis, 2021, 1, 22-24.	6.1	1
41	Large-scale synthesis of metal nanosheets as highly active catalysts: Combining accumulative roll-bonding and etching process. Frontiers of Materials Science, 2021, 15, 456-464.	2.2	1
42	Frontispiz: Supported Rhodium Catalysts for Ammonia–Borane Hydrolysis: Dependence of the Catalytic Activity on the Highest Occupied State of the Single Rhodium Atoms. Angewandte Chemie, 2017, 129, .	2.0	0
43	Frontispiece: Supported Rhodium Catalysts for Ammonia–Borane Hydrolysis: Dependence of the Catalytic Activity on the Highest Occupied State of the Single Rhodium Atoms. Angewandte Chemie - International Edition, 2017, 56, .	13.8	Ο
44	Regulation of Active Oxygen Species by Grain Boundaries to Optimize Reaction Paths toward Aerobic Oxidations. Energy and Environmental Materials, 2021, 4, 444-450.	12.8	0