Cara J Gottardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7618342/publications.pdf

Version: 2024-02-01

71004 60403 9,421 98 43 85 citations h-index g-index papers 105 105 105 16464 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Lung Injury Induces Alveolar Type 2 Cell Hypertrophy and Polyploidy with Implications for Repair and Regeneration. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 564-576.	1.4	14
2	The lung microenvironment shapes a dysfunctional response of alveolar macrophages in aging. Journal of Clinical Investigation, $2021,131,.$	3.9	86
3	Resetting proteostasis with ISRIB promotes epithelial differentiation to attenuate pulmonary fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	36
4	Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia. Nature, 2021, 590, 635-641.	13.7	524
5	A spatially restricted fibrotic niche in pulmonary fibrosis is sustained by M-CSF/M-CSFR signalling in monocyte-derived alveolar macrophages. European Respiratory Journal, 2020, 55, 1900646.	3.1	188
6	The Sphingosine Kinase 1 Inhibitor, PF543, Mitigates Pulmonary Fibrosis by Reducing Lung Epithelial Cell mtDNA Damage and Recruitment of Fibrogenic Monocytes. International Journal of Molecular Sciences, 2020, 21, 5595.	1.8	16
7	Mitochondrial 8-oxoguanine DNA glycosylase mitigates alveolar epithelial cell PINK1 deficiency, mitochondrial DNA damage, apoptosis, and lung fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L1084-L1096.	1.3	26
8	Nesprin-2G tension fine-tunes Wnt/ \hat{l}^2 -catenin signaling. Journal of Cell Biology, 2020, 219, .	2.3	1
9	Macrophages as a Source and Recipient of Wnt Signals. Frontiers in Immunology, 2019, 10, 1813.	2.2	45
10	Idiopathic Pulmonary Fibrosis and Lung Cancer: Finding Similarities within Differences. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 667-668.	1.4	10
11	Elevated CO2 regulates the Wnt signaling pathway in mammals, Drosophila melanogaster and Caenorhabditis elegans. Scientific Reports, 2019, 9, 18251.	1.6	24
12	Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1517-1536.	2.5	866
13	Force-dependent allostery of the $\hat{l}\pm$ -catenin actin-binding domain controls adherens junction dynamics and functions. Nature Communications, 2018, 9, 5121.	5.8	86
14	$\hat{l}\pm T$ -catenin: A developmentally dispensable, disease-linked member of the $\hat{l}\pm$ -catenin family. Tissue Barriers, 2018, 6, e1463896.	1.6	9
15	Lrp5/ \hat{l}^2 -Catenin Signaling Controls Lung Macrophage Differentiation and Inhibits Resolution of Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 191-201.	1.4	50
16	Cardiomyocytes of the Heart and Pulmonary Veins: Novel Contributors to Asthma?. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 512-518.	1.4	12
17	Beyond epithelialâ€toâ€mesenchymal transition: Common suppression of differentiation programs underlies epithelial barrier dysfunction in mild, moderate, and severe asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 1988-2004.	2.7	56
18	Defining the Cell Type through Which the Asthma-Associated Intercellular Junction Protein Alpha-T-Catenin Drives Asthma Phenotypes in Mice. Journal of Allergy and Clinical Immunology, 2017, 139, AB170.	1.5	0

#	Article	IF	Citations
19	Nuclear α-catenin mediates the DNA damage response via \hat{I}^2 -catenin and nuclear actin. Journal of Cell Science, 2017, 130, 1717-1729.	1.2	19
20	\hat{l}_{\pm} -Catenin homodimers are recruited to phosphoinositide-activated membranes to promote adhesion. Journal of Cell Biology, 2017, 216, 3767-3783.	2.3	22
21	Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. Journal of Experimental Medicine, 2017, 214, 2387-2404.	4.2	755
22	A Simple Method to Assess Abundance of the \hat{l}^2 -Catenin Signaling Pool in Cells. Methods in Molecular Biology, 2016, 1481, 49-60.	0.4	3
23	Persistent nuclear actin filaments inhibit transcription by RNA polymerase II. Journal of Cell Science, 2016, 129, 3412-25.	1.2	60
24	Wntâ€induced deubiquitination FoxM1 ensures nucleus βâ€catenin transactivation. EMBO Journal, 2016, 35, 668-684.	3.5	84
25	\hat{l}_{\pm} T-catenin in restricted brain cell types and its potential connection to autism. Journal of Molecular Psychiatry, 2016, 4, 2.	2.0	20
26	Adiponectin inhibits Wnt co-receptor, Lrp6, phosphorylation and \hat{l}^2 -catenin signaling. Biochemical and Biophysical Research Communications, 2016, 470, 606-612.	1.0	14
27	The cardiomyocyte protein $\hat{l}\pm T$ -catenin contributes to asthma through regulating pulmonary vein inflammation. Journal of Allergy and Clinical Immunology, 2016, 138, 123-129.e2.	1.5	10
28	Beyond \hat{i}^2 -catenin: prospects for a larger catenin network in the nucleus. Nature Reviews Molecular Cell Biology, 2016, 17, 55-64.	16.1	111
29	The Cardiac Protein Alpha-T-Catenin Contributes to the Pathogenesis of Occupational Asthma. Journal of Allergy and Clinical Immunology, 2015, 135, AB76.	1.5	0
30	Nuclear Actin Dynamics Regulate Nuclear Organization and Transcription. Biophysical Journal, 2015, 108, 536a.	0.2	0
31	The Increase in Maternal Expression of <i>axin1</i> and <i>axin2</i> Contribute to the Zebrafish Mutant <i>Ichabod</i> Ventralized Phenotype. Journal of Cellular Biochemistry, 2015, 116, 418-430.	1.2	7
32	\hat{l}_{\pm} -catenin phosphorylation promotes intercellular adhesion through a dual-kinase mechanism. Journal of Cell Science, 2015, 128, 1150-65.	1.2	43
33	Nuclear Signaling from Cadherin Adhesion Complexes. Current Topics in Developmental Biology, 2015, 112, 129-196.	1.0	71
34	The cardiac protein $\hat{l}\pm T$ -catenin contributes to chemical-induced asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L253-L258.	1.3	17
35	Structural Determinants of the Mechanical Stability of \hat{l} ±-Catenin. Journal of Biological Chemistry, 2015, 290, 18890-18903.	1.6	31
36	\hat{l}_{\pm} -Catenin phosphorylation promotes intercellular adhesion through a dual-kinase mechanism. Development (Cambridge), 2015, 142, e0704-e0704.	1.2	0

#	Article	IF	Citations
37	\hat{A} -Catenin is an inhibitor of transcription. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5260-5265.	3.3	47
38	E-cadherin phosphorylation occurs during its biosynthesis to promote its cell surface stability and adhesion. Molecular Biology of the Cell, 2014, 25, 2365-2374.	0.9	53
39	Wnt Coreceptor <i>Lrp5</i> Is a Driver of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 185-195.	2.5	95
40	α-Catenin cytomechanics – role in cadherin-dependent adhesion and mechanotransduction. Journal of Cell Science, 2014, 127, 1779-1791.	1.2	107
41	Inhibition of canonical WNT signaling attenuates human leiomyoma cell growth. Fertility and Sterility, 2014, 101, 1441-1449.e1.	0.5	61
42	α-Catenin cytomechanics – role in cadherin-dependent adhesion and mechanotransduction. Development (Cambridge), 2014, 141, e1006-e1006.	1.2	0
43	Considerations for Targeting \hat{l}^2 -Catenin Signaling in Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 566-568.	2.5	26
44	Fat in Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1268-1269.	2.5	2
45	ICAT is a novel Ptf1a interactor that regulates pancreatic acinar differentiation and displays altered expression in tumours. Biochemical Journal, 2013, 451, 395-405.	1.7	6
46	Mitochondrial Reactive Oxygen Species Promote Epidermal Differentiation and Hair Follicle Development. Science Signaling, 2013, 6, ra8.	1.6	276
47	Paracrine activation of WNT/β-catenin pathway in uterine leiomyoma stem cells promotes tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17053-17058.	3.3	148
48	Signaling from the Adherens Junction. Sub-Cellular Biochemistry, 2012, 60, 171-196.	1.0	64
49	The Wnt Co-Receptors, LRP5/6, Contribute To Fibrosis In Mice And Men. , 2012, , .		0
50	474 ICAT is a Novel PTF1a Interactor That Regulates Acinar Differentiation and Displays Altered Expression in Pancreatic Ductal Tumors. European Journal of Cancer, 2012, 48, S114.	1.3	0
51	In Vitro Response To Stimulation Of Wnt/Beta-Catenin Signaling Under Inflammatory Conditions. , 2012, , .		0
52	UVB radiationâ€induced βâ€catenin signaling is enhanced by COXâ€⊋ expression in keratinocytes. Molecular Carcinogenesis, 2012, 51, 734-745.	1.3	19
53	Wnt∫î²â€€atenin signaling is hyperactivated in systemic sclerosis and induces Smadâ€dependent fibrotic responses in mesenchymal cells. Arthritis and Rheumatism, 2012, 64, 2734-2745.	6.7	193
54	Fibrosis in systemic sclerosis: common and unique pathobiology. Fibrogenesis and Tissue Repair, 2012, 5, S18.	3.4	31

#	Article	IF	CITATIONS
55	Loss Of Wnt/beta-Catenin Signaling Alters Lung Fibroblast Response To Fibrotic Injury. , 2011, , .		O
56	\hat{l}^2 -catenin signaling. Current Opinion in Rheumatology, 2011, 23, 562-567.	2.0	158
57	Wnt/Beta-Catenin Signaling Mediates A Pro-Inflammatory Response In Murine Models Of Acute Lung Injury. , 2011, , .		0
58	Nemo kinase phosphorylates \hat{l}^2 -catenin to promote ommatidial rotation and connects core PCP factors to E-cadherinâ \in \hat{l}^2 -catenin. Nature Structural and Molecular Biology, 2011, 18, 665-672.	3.6	43
59	Canonical Wnt signaling induces skin fibrosis and subcutaneous lipoatrophy: A novel mouse model for scleroderma?. Arthritis and Rheumatism, 2011, 63, 1707-1717.	6.7	178
60	Nuclear \hat{l}^2 -Catenin Is Increased in Systemic Sclerosis Pulmonary Fibrosis and Promotes Lung Fibroblast Migration and Proliferation. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 915-922.	1.4	132
61	Regenerative Pathways and Emphysema. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 688-690.	2.5	8
62	Integrin Regulation of \hat{l}^2 -Catenin Signaling in Ovarian Carcinoma. Journal of Biological Chemistry, 2011, 286, 23467-23475.	1.6	46
63	Role of von Hippelâ€Lindau protein in fibroblast proliferation and fibrosis. FASEB Journal, 2011, 25, 3032-3044.	0.2	24
64	Tissue-Specific Knockout/Knockdown of Type 2 TGF- \hat{l}^2 Receptor and Protection against Bleomycin Injury/Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 983-983.	2.5	2
65	Regulation of Wnt∫βâ€catenin signaling by protein kinases. Developmental Dynamics, 2010, 239, 34-44.	0.8	139
66	Wnt/ \hat{A}^2 -catenin Pathway Activation In Lung Injury. , 2010, , .		0
67	\hat{l}^2 -Catenin/T-cell Factor Signaling Is Activated during Lung Injury and Promotes the Survival and Migration of Alveolar Epithelial Cells. Journal of Biological Chemistry, 2010, 285, 3157-3167.	1.6	105
68	Nesprin-2 Interacts with \hat{l}_{\pm} -Catenin and Regulates Wnt Signaling at the Nuclear Envelope. Journal of Biological Chemistry, 2010, 285, 34932-34938.	1.6	66
69	Loss Of Wnt/ \hat{l}^2 -catenin Signaling Is Protective In A Bleomycin Model Of Pulmonary Fibrosis. , 2010, , .		0
70	\hat{l}^2 -Catenin Phosphorylated at Serine 45 Is Spatially Uncoupled from \hat{l}^2 -Catenin Phosphorylated in the GSK3 Domain: Implications for Signaling. PLoS ONE, 2010, 5, e10184.	1.1	79
71	The Terminal Region of \hat{I}^2 -Catenin Promotes Stability by Shielding the Armadillo Repeats from the Axin-scaffold Destruction Complex. Journal of Biological Chemistry, 2009, 284, 28222-28231.	1.6	25
72	Activity of the β-catenin phosphodestruction complex at cell–cell contacts is enhanced by cadherin-based adhesion. Journal of Cell Biology, 2009, 186, 219-228.	2.3	119

#	Article	IF	CITATIONS
73	Issues associated with assessing nuclear localization of N-terminally unphosphorylated \hat{l}^2 -catenin with monoclonal antibody 8E7. Biology Direct, 2009, 4, 5.	1.9	20
74	Cadherins and cancer: how does cadherin dysfunction promote tumor progression?. Oncogene, 2008, 27, 6920-6929.	2.6	700
75	Terminal Regions of Î ² -Catenin Come into View. Structure, 2008, 16, 336-338.	1.6	27
76	Molecular components of the adherens junction. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 562-571.	1.4	226
77	VE-cadherin and \hat{l}^2 -catenin binding dynamics during histamine-induced endothelial hyperpermeability. American Journal of Physiology - Cell Physiology, 2008, 294, C977-C984.	2.1	69
78	Polycystin-1 C-terminal tail associates with \hat{l}^2 -catenin and inhibits canonical Wnt signaling. Human Molecular Genetics, 2008, 17, 3105-3117.	1.4	163
79	Phospho-regulation of β-Catenin Adhesion and Signaling Functions. Physiology, 2007, 22, 303-309.	1.6	207
80	When domestiques rebel: kinesins, cadherins and neuronal proliferation. Nature Cell Biology, 2005, 7, 445-447.	4.6	2
81	Terminating Wnt signals. Journal of Cell Biology, 2005, 171, 761-763.	2.3	4
82	Distinct molecular forms of \hat{l}^2 -catenin are targeted to adhesive or transcriptional complexes. Journal of Cell Biology, 2004, 167, 339-349.	2.3	294
83	Role for ICAT in \hat{I}^2 -catenin-dependent nuclear signaling and cadherin functions. American Journal of Physiology - Cell Physiology, 2004, 286, C747-C756.	2.1	66
84	E-Cadherin Suppresses Cellular Transformation by Inhibiting \hat{I}^2 -Catenin Signaling in an Adhesion-Independent Manner. Journal of Cell Biology, 2001, 153, 1049-1060.	2.3	511
85	Adhesion signaling: How β-catenin interacts with its partners. Current Biology, 2001, 11, R792-R794.	1.8	208
86	A Dileucine Motif Targets E-cadherin to the Basolateral Cell Surface in Madin-Darby Canine Kidney and LLC-PK1 Epithelial Cells. Journal of Biological Chemistry, 2001, 276, 22565-22572.	1.6	155
87	A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO Journal, 1999, 18, 3956-3963.	3.5	442
88	Tyrosine-based Membrane Protein Sorting Signals Are Differentially Interpreted by Polarized Madin-Darby Canine Kidney and LLC-PK1 Epithelial Cells. Journal of Biological Chemistry, 1998, 273, 26862-26869.	1.6	109
89	Sorting of Ion Pumps in Polarized Epithelial Cells Annals of the New York Academy of Sciences, 1997, 834, 514-523.	1.8	7
90	The junction-associated protein, zonula occludens-1, localizes to the nucleus before the maturation and during the remodeling of cell-cell contacts Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 10779-10784.	3.3	318

#	Article	IF	CITATIONS
91	Expression of a Protein in Rat Kidney and Distal Colon That Is Related to the Gastric HK-ATPase. Cellular Physiology and Biochemistry, 1995, 5, 1-9.	1.1	2
92	Sorting of the Gastric H,K-ATPase in Endocrine and Epithelial Cells. Annals of the New York Academy of Sciences, 1994, 733, 212-222.	1.8	4
93	Chapter 8 Synthesis and Sorting of Ion Pumps in Polarized Cells. Current Topics in Membranes, 1994, 41, 143-168.	0.5	2
94	Sorting of ion transport proteins in polarized cells. Journal of Cell Science, 1993, 1993, 13-20.	1.2	11
95	Delivery of Na+,K(+)-ATPase in polarized epithelial cells. Science, 1993, 260, 552-554.	6.0	100
96	An ion-transporting ATPase encodes multiple apical localization signals Journal of Cell Biology, 1993, 121, 283-293.	2.3	139
97	Cell surface biotinylation in the determination of epithelial membrane polarity. Cytotechnology, 1992, 14, 173-180.	0.3	24
98	Tight Junctions in Simple and Stratified Epithelium. , 0, , 217-233.		1