
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/761796/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Peruvian Andean grains: Nutritional, functional properties and industrial uses. Critical Reviews in Food Science and Nutrition, 2023, 63, 9634-9647.                                                                                                               | 10.3 | 4         |
| 2  | Potential of moringa leaf and baobab fruit food-to-food fortification of wholegrain maize porridge<br>to improve iron and zinc bioaccessibility. International Journal of Food Sciences and Nutrition, 2022,<br>73, 15-27.                                         | 2.8  | 9         |
| 3  | Structural requirements of flavonoids for the selective inhibition of α-amylase versus α-glucosidase.<br>Food Chemistry, 2022, 370, 130981.                                                                                                                        | 8.2  | 32        |
| 4  | Malian Thick Porridges (tÃ) of Pearl Millet Are Made Thinner in Urban Than Rural Areas and Decrease<br>Satiety. Food and Nutrition Bulletin, 2022, 43, 35-43.                                                                                                      | 1.4  | 1         |
| 5  | Effect of isomaltodextrin on dough rheology and bread quality. International Journal of Food<br>Science and Technology, 2022, 57, 1554-1562.                                                                                                                       | 2.7  | 3         |
| 6  | OUP accepted manuscript. Journal of Nutrition, 2022, , .                                                                                                                                                                                                           | 2.9  | 0         |
| 7  | Matched whole grain wheat and refined wheat milled products do not differ in glycemic response or gastric emptying in a randomized, crossover trial. American Journal of Clinical Nutrition, 2022, 115, 1013-1026.                                                 | 4.7  | 5         |
| 8  | Activation of gastrointestinal ileal brake response with dietary slowly digestible carbohydrates, with<br>no observed effect on subjective appetite, in an acute randomized, double-blind, crossover trial.<br>European Journal of Nutrition, 2022, 61, 1965-1980. | 3.9  | 4         |
| 9  | Viscosity development from oat bran β-glucans through <i>in vitro</i> digestion is lowered in the presence of phenolic compounds. Food and Function, 2022, 13, 3894-3904.                                                                                          | 4.6  | 2         |
| 10 | Mechanistic insights into consumption of the food additive xanthan gum by the human gut microbiota. Nature Microbiology, 2022, 7, 556-569.                                                                                                                         | 13.3 | 21        |
| 11 | Corn arabinoxylan has a repeating structure of subunits of high branch complexity with slow gut microbiota fermentation. Carbohydrate Polymers, 2022, 289, 119435.                                                                                                 | 10.2 | 10        |
| 12 | Novel pearl millet couscous process for West African markets using a lowâ€cost singleâ€screw extruder.<br>International Journal of Food Science and Technology, 2022, 57, 4594-4601.                                                                               | 2.7  | 1         |
| 13 | Influence of Hofmeister anions on structural and thermal properties of a starch-protein-lipid nanoparticle. International Journal of Biological Macromolecules, 2022, 210, 768-775.                                                                                | 7.5  | 0         |
| 14 | In vitro Fecal Fermentation of Indigestible Residues from Heatâ€Moisture Treated Maize Meal and Maize<br>Starch with Stearic Acid. Starch/Staerke, 2022, 74, .                                                                                                     | 2.1  | 0         |
| 15 | Soluble corn arabinoxylan has desirable material properties for high incorporation in expanded cereal extrudates. Food Hydrocolloids, 2022, 133, 107939.                                                                                                           | 10.7 | 4         |
| 16 | Storage of biofortified maize in Purdue Improved Crop Storage (PICS) bags reduces disulfide<br>linkage-driven decrease in porridge viscosity. LWT - Food Science and Technology, 2021, 136, 110262.                                                                | 5.2  | 1         |
| 17 | Isomaltodextrin strengthens model starch gels and moderately promotes starch retrogradation.<br>International Journal of Food Science and Technology, 2021, 56, 1631-1640.                                                                                         | 2.7  | 1         |
| 18 | Boosting the value of insoluble dietary fiber to increase gut fermentability through food processing.<br>Food and Function, 2021, 12, 10658-10666.                                                                                                                 | 4.6  | 13        |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Structure and binding ability of selfâ€assembled <scp>αâ€lactalbumin</scp> protein nanotubular gels.<br>Biotechnology Progress, 2021, 37, e3127.                                                                               | 2.6  | 5         |
| 20 | Integrating endâ€user preferences into breeding programmes for roots, tubers and bananas.<br>International Journal of Food Science and Technology, 2021, 56, 1071-1075.                                                        | 2.7  | 23        |
| 21 | Food Matrix Effects for Modulating Starch Bioavailability. Annual Review of Food Science and Technology, 2021, 12, 169-191.                                                                                                    | 9.9  | 50        |
| 22 | A Unique Gut Microbiome–Physical Function Axis Exists in Older People with HIV: An Exploratory<br>Study. AIDS Research and Human Retroviruses, 2021, 37, 542-550.                                                              | 1.1  | 4         |
| 23 | Atomistic Modeling of Peptide Aggregation and β-Sheet Structuring in Corn Zein for Viscoelasticity.<br>Biomacromolecules, 2021, 22, 1856-1866.                                                                                 | 5.4  | 9         |
| 24 | High arabinoxylan fine structure specificity to gut bacteria driven by corn genotypes but not<br>environment. Carbohydrate Polymers, 2021, 257, 117667.                                                                        | 10.2 | 17        |
| 25 | Microwave treatment enhances human gut microbiota fermentability of isolated insoluble dietary fibers. Food Research International, 2021, 143, 110293.                                                                         | 6.2  | 24        |
| 26 | Dietary Fiber Hierarchical Specificity: the Missing Link for Predictable and Strong Shifts in Gut<br>Bacterial Communities. MBio, 2021, 12, e0102821.                                                                          | 4.1  | 36        |
| 27 | Heavy metal contamination and health risk assessment in grains and grain-based processed food in Arequipa region of Peru. Chemosphere, 2021, 274, 129792.                                                                      | 8.2  | 38        |
| 28 | Effects of different storage temperatures on the intra- and intermolecular retrogradation and digestibility of sago starch. International Journal of Biological Macromolecules, 2021, 182, 65-71.                              | 7.5  | 20        |
| 29 | Protein matrix retains most starch granules within corn fiber from corn wet-milling process.<br>Industrial Crops and Products, 2021, 165, 113429.                                                                              | 5.2  | 13        |
| 30 | Current and future challenges in starch research. Current Opinion in Food Science, 2021, 40, 46-50.                                                                                                                            | 8.0  | 19        |
| 31 | Descriptive sensory analysis of instant porridge from stored wholegrain and decorticated pearl<br>millet flour cooked, stabilized and improved by using a lowâ€cost extruder. Journal of Food Science,<br>2021, 86, 3824-3838. | 3.1  | 11        |
| 32 | Enzyme treatments on corn fiber from wet-milling process for increased starch and protein extraction. Industrial Crops and Products, 2021, 168, 113622.                                                                        | 5.2  | 19        |
| 33 | Rheological and water binding properties of xanthan, guar and ultra-finely milled oatmeal in white birch sap: Influence of sap minor constituents. Food Research International, 2021, 147, 110478.                             | 6.2  | 5         |
| 34 | Physicochemical and rheological properties of cooked extruded reformed rice with added protein or fiber. LWT - Food Science and Technology, 2021, 151, 112196.                                                                 | 5.2  | 12        |
| 35 | Influence of polysaccharide concentration on polyphenol-polysaccharide interactions. Carbohydrate<br>Polymers, 2021, 274, 118670.                                                                                              | 10.2 | 27        |
| 36 | Rice starch and Co-proteins improve the rheological properties of zein dough. Journal of Cereal<br>Science, 2021, 102, 103334.                                                                                                 | 3.7  | 17        |

| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Dietary starch is weight reducing when distally digested in the small intestine. Carbohydrate<br>Polymers, 2021, 273, 118599.                                                                            | 10.2 | 6         |
| 38 | An exercise intervention alters stool microbiota and metabolites among older, sedentary adults.<br>Therapeutic Advances in Infectious Disease, 2021, 8, 204993612110270.                                 | 1.8  | 16        |
| 39 | Development of a novel starch-based dietary fiber using glucanotransferase. Food and Function, 2021, 12, 5745-5754.                                                                                      | 4.6  | 5         |
| 40 | Microwave-assisted synthesis of NaMnF3 particles with tuneable morphologies. Chemical Communications, 2021, 57, 11799-11802.                                                                             | 4.1  | 1         |
| 41 | Deciphering molecular interaction and digestibility in retrogradation of amylopectin gel networks.<br>Food and Function, 2021, 12, 11460-11468.                                                          | 4.6  | 10        |
| 42 | Some pearl millet-based foods promote satiety or reduce glycaemic response in a crossover trial.<br>British Journal of Nutrition, 2021, 126, 1168-1178.                                                  | 2.3  | 9         |
| 43 | Development of the Choices 5-Level Criteria to Support Multiple Food System Actions. Nutrients, 2021, 13, 4509.                                                                                          | 4.1  | 3         |
| 44 | Synthesis of novel α-glucans with potential health benefits through controlled glucose release in the human gastrointestinal tract. Critical Reviews in Food Science and Nutrition, 2020, 60, 123-146.   | 10.3 | 40        |
| 45 | Phenolic compounds are less degraded in presence of starch than in presence of proteins through processing in model porridges. Food Chemistry, 2020, 309, 125769.                                        | 8.2  | 25        |
| 46 | Abnormal Eating Patterns Cause Circadian Disruption and Promote Alcohol-Associated Colon<br>Carcinogenesis. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 219-237.                    | 4.5  | 43        |
| 47 | A Ribose-Scavenging System Confers Colonization Fitness on the Human Gut Symbiont Bacteroides thetaiotaomicron in a Diet-Specific Manner. Cell Host and Microbe, 2020, 27, 79-92.e9.                     | 11.0 | 30        |
| 48 | Pearl millet ( <i>Pennisetum glaucum</i> ) couscous breaks down faster than wheat couscous in the<br>Human Gastric Simulator, though has slower starch hydrolysis. Food and Function, 2020, 11, 111-122. | 4.6  | 22        |
| 49 | African Adansonia digitata fruit pulp (baobab) modifies provitamin A carotenoid bioaccessibility from composite pearl millet porridges. Journal of Food Science and Technology, 2020, 57, 1382-1392.     | 2.8  | 13        |
| 50 | Long-term low shear-induced highly viscous waxy potato starch gel formed through intermolecular<br>double helices. Carbohydrate Polymers, 2020, 232, 115815.                                             | 10.2 | 18        |
| 51 | Single-Arm, Non-randomized, Time Series, Single-Subject Study of Fecal Microbiota Transplantation in<br>Multiple Sclerosis. Frontiers in Neurology, 2020, 11, 978.                                       | 2.4  | 48        |
| 52 | Investigating the potential of slow-retrograding starches to reduce staling in soft savory bread and sweet cake model systems. Food Research International, 2020, 138, 109745.                           | 6.2  | 12        |
| 53 | Whole grain cereal fibers and their support of the gut commensal Clostridia for health. Bioactive<br>Carbohydrates and Dietary Fibre, 2020, 24, 100245.                                                  | 2.7  | 9         |
| 54 | Quantitative approach to study secondary structure of proteins by FT-IR spectroscopy, using a model wheat gluten system. International Journal of Biological Macromolecules, 2020, 164, 2753-2760.       | 7.5  | 69        |

| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Quantitative characterization of the digestive viscosity profile of cereal soluble dietary fibers using in vitro digestion in Rapid ViscoAnalyzer. Carbohydrate Polymers, 2020, 248, 116807.                                                          | 10.2 | 3         |
| 56 | Emerging science on benefits of whole grain oat and barley and their soluble dietary fibers for heart health, glycemic response, and gut microbiota. Nutrition Reviews, 2020, 78, 13-20.                                                              | 5.8  | 87        |
| 57 | Formulation of Orange Juice with Dietary Fibers Enhances Bioaccessibility of Orange Flavonoids in<br>Juice but Limits Their Ability to Inhibit <i>In Vitro</i> Glucose Transport. Journal of Agricultural and<br>Food Chemistry, 2020, 68, 9387-9397. | 5.2  | 16        |
| 58 | Evaluation of the Prebiotic Potential of a Commercial Synbiotic Food Ingredient on Gut Microbiota in an Ex Vivo Model of the Human Colon. Nutrients, 2020, 12, 2669.                                                                                  | 4.1  | 9         |
| 59 | Gut microbiota modulation with long-chain corn bran arabinoxylan in adults with overweight and obesity is linked to an individualized temporal increase in fecal propionate. Microbiome, 2020, 8, 118.                                                | 11.1 | 81        |
| 60 | Sleep Health Should be Included as a Therapeutic Target in the Treatment of HIV. AIDS Research and Human Retroviruses, 2020, 36, 631-631.                                                                                                             | 1.1  | 2         |
| 61 | Subtle Variations in Dietary-Fiber Fine Structure Differentially Influence the Composition and<br>Metabolic Function of Gut Microbiota. MSphere, 2020, 5, .                                                                                           | 2.9  | 38        |
| 62 | Corn zein undergoes conformational changes to higher β-sheet content during its self-assembly in an<br>increasingly hydrophilic solvent. International Journal of Biological Macromolecules, 2020, 157,<br>232-239.                                   | 7.5  | 30        |
| 63 | Conditioning with slowly digestible starch diets in mice reduces jejunal α-glucosidase activity and glucogenesis from a digestible starch feeding. Nutrition, 2020, 78, 110857.                                                                       | 2.4  | 3         |
| 64 | Fecal microbiota responses to rice RS3 are specific to amylose molecular structure. Carbohydrate Polymers, 2020, 243, 116475.                                                                                                                         | 10.2 | 52        |
| 65 | On the role of the internal chain length distribution of amylopectins during retrogradation: Double helix lateral aggregation and slow digestibility. Carbohydrate Polymers, 2020, 246, 116633.                                                       | 10.2 | 28        |
| 66 | Maize Bran Particle Size Governs the Community Composition and Metabolic Output of Human Gut<br>Microbiota in in vitro Fermentations. Frontiers in Microbiology, 2020, 11, 1009.                                                                      | 3.5  | 15        |
| 67 | Stored Gelatinized Waxy Potato Starch Forms a Strong Retrograded Gel at Low pH with the<br>Formation of Intermolecular Double Helices. Journal of Agricultural and Food Chemistry, 2020, 68,<br>4036-4041.                                            | 5.2  | 23        |
| 68 | Carbohydrates designed with different digestion rates modulate gastric emptying response in rats.<br>International Journal of Food Sciences and Nutrition, 2020, 71, 839-844.                                                                         | 2.8  | 12        |
| 69 | Effect of edible plant materials on provitamin A stability and bioaccessibility from extruded whole pearl millet (P. typhoides) composite blends. LWT - Food Science and Technology, 2020, 123, 109109.                                               | 5.2  | 9         |
| 70 | Neutral hydrocolloids promote shear-induced elasticity and gel strength of gelatinized waxy potato starch. Food Hydrocolloids, 2020, 107, 105923.                                                                                                     | 10.7 | 38        |
| 71 | New View on Dietary Fiber Selection for Predictable Shifts in Gut Microbiota. MBio, 2020, 11, .                                                                                                                                                       | 4.1  | 65        |
| 72 | Discrete Fiber Structures Dictate Human Gut Bacteria Outcomes. Trends in Endocrinology and<br>Metabolism, 2020, 31, 803-805.                                                                                                                          | 7.1  | 1         |

| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Development of Slowly Digestible Starch Derived α-Glucans with 4,6-α-Glucanotransferase and<br>Branching Sucrase Enzymes. Journal of Agricultural and Food Chemistry, 2020, 68, 6664-6671.          | 5.2  | 18        |
| 74 | Pine Bark Phenolic Extracts, Current Uses, and Potential Food Applications: A Review. Current<br>Pharmaceutical Design, 2020, 26, 1866-1879.                                                        | 1.9  | 7         |
| 75 | The Effect of Acute Continuous Hypoxia on Triglyceride Levels in Constantly Fed Healthy Men.<br>Frontiers in Physiology, 2019, 10, 752.                                                             | 2.8  | 7         |
| 76 | Phenolic compounds mediate aggregation of water-soluble polysaccharides and change their<br>rheological properties: Effect of different phenolic compounds. Food Hydrocolloids, 2019, 97, 105193.   | 10.7 | 38        |
| 77 | Potential of Prebiotic Butyrogenic Fibers in Parkinson's Disease. Frontiers in Neurology, 2019, 10, 663.                                                                                            | 2.4  | 60        |
| 78 | Starch digestion kinetics of extruded reformed rice is changed in different ways with added protein or fiber. Food and Function, 2019, 10, 4577-4583.                                               | 4.6  | 13        |
| 79 | Different inhibition properties of catechins on the individual subunits of mucosal α-glucosidases as measured by partially-purified rat intestinal extract. Food and Function, 2019, 10, 4407-4413. | 4.6  | 23        |
| 80 | Strong Adhesives from Corn Protein and Tannic Acid. Advanced Sustainable Systems, 2019, 3, 1900077.                                                                                                 | 5.3  | 22        |
| 81 | Among older adults, age-related changes in the stool microbiome differ by HIV-1 serostatus.<br>EBioMedicine, 2019, 40, 583-594.                                                                     | 6.1  | 23        |
| 82 | Physical Inaccessibility of a Resistant Starch Shifts Mouse Gut Microbiota to Butyrogenic Firmicutes.<br>Molecular Nutrition and Food Research, 2019, 63, e1801012.                                 | 3.3  | 49        |
| 83 | Fabrication of a soluble crosslinked corn bran arabinoxylan matrix supports a shift to butyrogenic gut bacteria. Food and Function, 2019, 10, 4497-4504.                                            | 4.6  | 30        |
| 84 | Complexation process of amylose under different concentrations of linoleic acid using molecular dynamics simulation. Carbohydrate Polymers, 2019, 216, 157-166.                                     | 10.2 | 35        |
| 85 | Starch digested product analysis by HPAEC reveals structural specificity of flavonoids in the inhibition of mammalian α-amylase and α-glucosidases. Food Chemistry, 2019, 288, 413-421.             | 8.2  | 41        |
| 86 | Impact of molecular interactions with phenolic compounds on food polysaccharides functionality.<br>Advances in Food and Nutrition Research, 2019, 90, 135-181.                                      | 3.0  | 34        |
| 87 | Potato product form impacts <i>in vitro</i> starch digestibility and glucose transport but only modestly impacts 24 h blood glucose response in humans. Food and Function, 2019, 10, 1846-1855.     | 4.6  | 10        |
| 88 | In Vitro Fecal Fermentation of High Pressure-Treated Fruit Peels Used as Dietary Fiber Sources.<br>Molecules, 2019, 24, 697.                                                                        | 3.8  | 13        |
| 89 | Banana starch and molecular shear fragmentation dramatically increase structurally driven slowly digestible starch in fully gelatinized bread crumb. Food Chemistry, 2019, 274, 664-671.            | 8.2  | 49        |
| 90 | Soluble xyloglucan generates bigger bacterial community shifts than pectic polymers during in vitro fecal fermentation. Carbohydrate Polymers, 2019, 206, 389-395.                                  | 10.2 | 50        |

| #   | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Carbohydrates of the Kernel. , 2019, , 305-318.                                                                                                                                                                                                    |      | 16        |
| 92  | Acid gelation of soluble laccase-crosslinked corn bran arabinoxylan and possible gel formation mechanism. Food Hydrocolloids, 2019, 92, 1-9.                                                                                                       | 10.7 | 52        |
| 93  | Shear-thickening behavior of gelatinized waxy starch dispersions promoted by the starch molecular characteristics. International Journal of Biological Macromolecules, 2019, 121, 120-126.                                                         | 7.5  | 23        |
| 94  | Transglutaminase Shows Better Functionality on High Digestible, High Lysine Sorghum-Wheat<br>Composite Dough and Bread, Compared to Normal Sorghum-Wheat Composites. Turkish Journal of<br>Agriculture: Food Science and Technology, 2019, 7, 877. | 0.3  | 1         |
| 95  | Potato phenolics impact starch digestion and glucose transport in model systems but translation to phenolic rich potato chips results in only modest modification of glycemic response in humans.<br>Nutrition Research, 2018, 52, 57-70.          | 2.9  | 31        |
| 96  | High Strength Adhesives from Catechol Crossâ€Linking of Zein Protein and Plant Phenolics. Advanced<br>Sustainable Systems, 2018, 2, 1700159.                                                                                                       | 5.3  | 46        |
| 97  | In vitro fermentation of Cookeina speciosa glucans stimulates the growth of the butyrogenic<br>Clostridium cluster XIVa in a targeted way. Carbohydrate Polymers, 2018, 183, 219-229.                                                              | 10.2 | 45        |
| 98  | Alterations in the amounts of microbial metabolites in different regions of the mouse large intestine using variably fermentable fibres. Bioactive Carbohydrates and Dietary Fibre, 2018, 13, 7-13.                                                | 2.7  | 11        |
| 99  | Brown rice compared to white rice slows gastric emptying in humans. European Journal of Clinical Nutrition, 2018, 72, 367-373.                                                                                                                     | 2.9  | 57        |
| 100 | Dietary Slowly Digestible Starch Triggers the Gut–Brain Axis in Obese Rats with Accompanied Reduced<br>Food Intake. Molecular Nutrition and Food Research, 2018, 62, 1700117.                                                                      | 3.3  | 37        |
| 101 | Divergent short-chain fatty acid production and succession of colonic microbiota arise in fermentation of variously-sized wheat bran fractions. Scientific Reports, 2018, 8, 16655.                                                                | 3.3  | 62        |
| 102 | Fecal Microbiota Responses to Bran Particles Are Specific to Cereal Type and <i>In Vitro</i> Digestion<br>Methods That Mimic Upper Gastrointestinal Tract Passage. Journal of Agricultural and Food<br>Chemistry, 2018, 66, 12580-12593.           | 5.2  | 25        |
| 103 | Dietary starch breakdown product sensing mobilizes and apically activates αâ€glucosidases in small<br>intestinal enterocytes. FASEB Journal, 2018, 32, 3903-3911.                                                                                  | 0.5  | 14        |
| 104 | In vitro assessment of oat $\hat{l}^2$ -glucans nutritional properties: An inter-laboratory methodology evaluation. Carbohydrate Polymers, 2018, 200, 271-277.                                                                                     | 10.2 | 5         |
| 105 | Dietary Fiber Treatment Corrects the Composition of Gut Microbiota, Promotes SCFA Production, and Suppresses Colon Carcinogenesis. Genes, 2018, 9, 102.                                                                                            | 2.4  | 158       |
| 106 | Traditional Malian Solid Foods Made from Sorghum and Millet Have Markedly Slower Gastric<br>Emptying than Rice, Potato, or Pasta. Nutrients, 2018, 10, 124.                                                                                        | 4.1  | 45        |
| 107 | A molecular dynamics simulation study on the conformational stability of amylose-linoleic acid complex in water. Carbohydrate Polymers, 2018, 196, 56-65.                                                                                          | 10.2 | 67        |
| 108 | Slowly digestible starch in fully gelatinized material is structurally driven by molecular size and A and B1 chain lengths. Carbohydrate Polymers, 2018, 197, 531-539.                                                                             | 10.2 | 127       |

| #   | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Pregelatinized starches enriched in slowly digestible and resistant fractions. LWT - Food Science and Technology, 2018, 97, 187-192.                                                                                                             | 5.2  | 7         |
| 110 | The nutritional property of endosperm starch and its contribution to the health benefits of whole grain foods. Critical Reviews in Food Science and Nutrition, 2017, 57, 3807-3817.                                                              | 10.3 | 23        |
| 111 | Dietary fibre-based SCFA mixtures promote both protection and repair of intestinal epithelial barrier function in a Caco-2 cell model. Food and Function, 2017, 8, 1166-1173.                                                                    | 4.6  | 99        |
| 112 | Biophysical features of cereal endosperm that decrease starch digestibility. Carbohydrate Polymers, 2017, 165, 180-188.                                                                                                                          | 10.2 | 55        |
| 113 | Characterizations of oil-in-water emulsion stabilized by different hydrophobic maize starches.<br>Carbohydrate Polymers, 2017, 166, 195-201.                                                                                                     | 10.2 | 36        |
| 114 | Elevating the conversation about GE crops. Nature Biotechnology, 2017, 35, 302-304.                                                                                                                                                              | 17.5 | 6         |
| 115 | Phenolic compounds increase the transcription of mouse intestinal maltase-glucoamylase and sucrase-isomaltase. Food and Function, 2017, 8, 1915-1924.                                                                                            | 4.6  | 12        |
| 116 | A pectic polysaccharide from peach palm fruits (Bactris gasipaes) and its fermentation profile by the human gut microbiota in vitro. Bioactive Carbohydrates and Dietary Fibre, 2017, 9, 1-6.                                                    | 2.7  | 24        |
| 117 | Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Scientific<br>Reports, 2017, 7, 2594.                                                                                                                | 3.3  | 400       |
| 118 | Starch-entrapped microsphere fibers improve bowel habit but do not exhibit prebiotic capacity in<br>those with unsatisfactory bowel habits: a phase I, randomized, double-blind, controlled human trial.<br>Nutrition Research, 2017, 44, 27-37. | 2.9  | 11        |
| 119 | Delayed utilization of some fast-fermenting soluble dietary fibers by human gut microbiota when presented in a mixture. Journal of Functional Foods, 2017, 32, 347-357.                                                                          | 3.4  | 91        |
| 120 | Prebiotics and Inflammatory Bowel Disease. Gastroenterology Clinics of North America, 2017, 46, 783-795.                                                                                                                                         | 2.2  | 25        |
| 121 | Reciprocal Prioritization to Dietary Glycans by Gut Bacteria in a Competitive Environment Promotes<br>Stable Coexistence. MBio, 2017, 8, .                                                                                                       | 4.1  | 121       |
| 122 | Physicochemical characterization, antioxidant activity of polysaccharides from Mesona chinensis<br>Benth and their protective effect on injured NCTC-1469 cells induced by H2O2. Carbohydrate Polymers,<br>2017, 175, 538-546.                   | 10.2 | 65        |
| 123 | Preload of slowly digestible carbohydrate microspheres decreases gastric emptying rate of subsequent meal in humans. Nutrition Research, 2017, 45, 46-51.                                                                                        | 2.9  | 15        |
| 124 | Number of branch points in α-limit dextrins impact glucose generation rates by mammalian mucosal<br>α-glucosidases. Carbohydrate Polymers, 2017, 157, 207-213.                                                                                   | 10.2 | 31        |
| 125 | Concord and Niagara Grape Juice and Their Phenolics Modify Intestinal Glucose Transport in a<br>Coupled in Vitro Digestion/Caco-2 Human Intestinal Model. Nutrients, 2016, 8, 414.                                                               | 4.1  | 32        |
| 126 | Contribution of the Individual Small Intestinal α-Glucosidases to Digestion of Unusual α-Linked<br>Glycemic Disaccharides. Journal of Agricultural and Food Chemistry, 2016, 64, 6487-6494.                                                      | 5.2  | 94        |

| #   | Article                                                                                                                                                                                                                                                                | IF      | CITATIONS      |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|
| 127 | Reformulating cereal bars: high resistant starch reduces in vitro digestibility but not in vivo glucose<br>or insulin response; whey protein reduces glucose but disproportionately increases insulin. American<br>Journal of Clinical Nutrition, 2016, 104, 995-1003. | 4.7     | 12             |
| 128 | Orange pomace fibre increases a composite scoring of subjective ratings of hunger and fullness in healthy adults. Appetite, 2016, 107, 478-485.                                                                                                                        | 3.7     | 16             |
| 129 | Structure of branching enzyme- and amylomaltase modified starch produced from well-defined amylose to amylopectin substrates. Carbohydrate Polymers, 2016, 152, 51-61.                                                                                                 | 10.2    | 34             |
| 130 | Elevated propionate and butyrate in fecal ferments of hydrolysates generated by oxalic acid treatment of corn bran arabinoxylan. Food and Function, 2016, 7, 4935-4943.                                                                                                | 4.6     | 11             |
| 131 | Milk glucosidase activity enables suckled pup starch digestion. Molecular and Cellular Pediatrics, 2016, 3, 4.                                                                                                                                                         | 1.8     | 5              |
| 132 | Small differences in amylopectin fine structure may explain large functional differences of starch.<br>Carbohydrate Polymers, 2016, 140, 113-121.                                                                                                                      | 10.2    | 138            |
| 133 | Prebiotics: why definitions matter. Current Opinion in Biotechnology, 2016, 37, 1-7.                                                                                                                                                                                   | 6.6     | 326            |
| 134 | Effect of pH on Cleavage of Glycogen by Vaginal Enzymes. PLoS ONE, 2015, 10, e0132646.                                                                                                                                                                                 | 2.5     | 31             |
| 135 | Structural features of soluble cereal arabinoxylan fibers associated with a slow rate of in vitro fermentation by human fecal microbiota. Carbohydrate Polymers, 2015, 130, 191-197.                                                                                   | 10.2    | 113            |
| 136 | Effect of dynamic high pressure on technological properties of cashew tree gum (Anacardium) Tj ETQq0 0 0 rgB1                                                                                                                                                          | Verlock | 2 10 Tf 50 382 |
| 137 | Cellular Response to the high protein digestibility/high-Lysine ( hdhl ) sorghum mutation. Plant<br>Science, 2015, 241, 70-77.                                                                                                                                         | 3.6     | 17             |
| 138 | In Vitro Starch Digestibility of Gluten-Free Spaghetti Based on Maize, Chickpea, and Unripe Plantain<br>Flours. Cereal Chemistry, 2015, 92, 171-176.                                                                                                                   | 2.2     | 4              |
| 139 | Enzymatic synthesis of 2-deoxyglucose-containing maltooligosaccharides for tracing the location of glucose absorption from starch digestion. Carbohydrate Polymers, 2015, 132, 41-49.                                                                                  | 10.2    | 8              |
| 140 | Polysaccharide Modification through Green Technology: Role of Endodextranase in Improving the<br>Physicochemical Properties of (1→3)(1→6)-α- <scp>d</scp> -Glucan. Journal of Agricultural and Food<br>Chemistry, 2015, 63, 6450-6456.                                 | 5.2     | 6              |
| 141 | Dietary Modulation of Gut Microbiota Contributes to Alleviation of Both Genetic and Simple Obesity in Children. EBioMedicine, 2015, 2, 968-984.                                                                                                                        | 6.1     | 306            |
| 142 | Slow Digestion Property of Octenyl Succinic Anhydride Modified Waxy Maize Starch in the Presence of Tea Polyphenols. Journal of Agricultural and Food Chemistry, 2015, 63, 2820-2829.                                                                                  | 5.2     | 34             |
| 143 | Effects of Ripening Temperature on Starch Structure and Gelatinization, Pasting, and Cooking<br>Properties in Rice ( <i>Oryza sativa</i> ). Journal of Agricultural and Food Chemistry, 2015, 63,<br>3085-3093.                                                        | 5.2     | 89             |
| 144 | Self-Assembled Nanoparticle of Common Food Constituents That Carries a Sparingly Soluble Small                                                                                                                                                                         | 5.2     | 30             |

Self-Assembled Nanoparticle of Common Food Constituents That Carries a Sparingly Soluble Small Molecule. Journal of Agricultural and Food Chemistry, 2015, 63, 4312-4319. 144

| #   | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Dietary Phenolic Compounds Selectively Inhibit the Individual Subunits of Maltase-Glucoamylase and<br>Sucrase-Isomaltase with the Potential of Modulating Glucose Release. Journal of Agricultural and<br>Food Chemistry, 2015, 63, 3873-3879. | 5.2  | 62        |
| 146 | Gut feedback mechanisms and food intake: a physiological approach to slow carbohydrate bioavailability. Food and Function, 2015, 6, 1072-1089.                                                                                                 | 4.6  | 42        |
| 147 | Influence of annealing flours from raw and pre ooked plantain fruit on cooked starch digestion<br>rates. Starch/Staerke, 2015, 67, 139-146.                                                                                                    | 2.1  | 12        |
| 148 | Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high<br>in pectic substances and xyloglucans. Food Chemistry, 2015, 167, 490-496.                                                                  | 8.2  | 155       |
| 149 | Induction of differentiation of small intestinal enterocyte cells by maltooligosaccharides. FASEB<br>Journal, 2015, 29, 596.14.                                                                                                                | 0.5  | 10        |
| 150 | Understanding Aspects of Carbohydrate Quality in Rice Related to Differences in Gastric Emptying<br>Rate. FASEB Journal, 2015, 29, 740.5.                                                                                                      | 0.5  | 1         |
| 151 | Differences in Preference and Preparation of Millet Porridge (TÃ1) between Urban and Rural Areas in<br>Mali and its Impact on Satiety. FASEB Journal, 2015, 29, 898.10.                                                                        | 0.5  | 0         |
| 152 | Potato Phenolics Modulate Rate of Glucose Transport in a Cacoâ€⊋ Human Intestinal Cell Model. FASEB<br>Journal, 2015, 29, 606.6.                                                                                                               | 0.5  | 3         |
| 153 | Different sucrose-isomaltase response of Caco-2 cells to glucose and maltose suggests dietary maltose sensing. Journal of Clinical Biochemistry and Nutrition, 2014, 54, 55-60.                                                                | 1.4  | 31        |
| 154 | Human α-amylase Present in Lower-Genital-Tract Mucosal Fluid Processes Glycogen to Support Vaginal<br>Colonization by Lactobacillus. Journal of Infectious Diseases, 2014, 210, 1019-1028.                                                     | 4.0  | 171       |
| 155 | Multifunctional Nutrient-Binding Proteins Adapt Human Symbiotic Bacteria for Glycan Competition in the Gut by Separately Promoting Enhanced Sensing and Catalysis. MBio, 2014, 5, e01441-14.                                                   | 4.1  | 58        |
| 156 | Modulating state transition and mechanical properties of viscoelastic resins from maize zein through interactions with plasticizers and co-proteins. Journal of Cereal Science, 2014, 60, 576-583.                                             | 3.7  | 39        |
| 157 | Influence of glucan structure on the swelling and leaching properties of starch microparticles.<br>Carbohydrate Polymers, 2014, 103, 234-243.                                                                                                  | 10.2 | 21        |
| 158 | Mucosal Câ€ŧerminal maltaseâ€glucoamylase hydrolyzes large size starch digestion products that may contribute to rapid postprandial glucose generation. Molecular Nutrition and Food Research, 2014, 58, 1111-1121.                            | 3.3  | 37        |
| 159 | Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods. Food and Function, 2014, 5, 18-34.                                                                                                        | 4.6  | 319       |
| 160 | A Perspective on the Complexity of Dietary Fiber Structures and Their Potential Effect on the Gut<br>Microbiota. Journal of Molecular Biology, 2014, 426, 3838-3850.                                                                           | 4.2  | 424       |
| 161 | Slow glucose release property of enzyme-synthesized highly branched maltodextrins differs among starch sources. Carbohydrate Polymers, 2014, 107, 182-191.                                                                                     | 10.2 | 70        |
| 162 | Branch pattern of starch internal structure influences the glucogenesis by mucosal<br>Nt-maltase-glucoamylase. Carbohydrate Polymers, 2014, 111, 33-40.                                                                                        | 10.2 | 20        |

| #   | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Alkaline extraction conditions determine gelling properties of corn bran arabinoxylans. Food<br>Hydrocolloids, 2013, 31, 121-126.                                                                                                                         | 10.7 | 46        |
| 164 | lodine binding to explore the conformational state of internal chains of amylopectin. Carbohydrate<br>Polymers, 2013, 98, 778-783.                                                                                                                        | 10.2 | 64        |
| 165 | Importance of Location of Digestion and Colonic Fermentation of Starch Related to Its Quality.<br>Cereal Chemistry, 2013, 90, 335-343.                                                                                                                    | 2.2  | 69        |
| 166 | Maltaseâ€Glucoamylase Modulates Gluconeogenesis and Sucraseâ€Isomaltase Dominates Starch Digestion<br>Glucogenesis. Journal of Pediatric Gastroenterology and Nutrition, 2013, 57, 704-712.                                                               | 1.8  | 46        |
| 167 | Enzyme-Synthesized Highly Branched Maltodextrins Have Slow Glucose Generation at the Mucosal<br>α-Glucosidase Level and Are Slowly Digestible In Vivo. PLoS ONE, 2013, 8, e59745.                                                                         | 2.5  | 83        |
| 168 | Enzymeâ€synthesized highly branched maltodextrins have slow glucogenesis at the mucosal<br>αâ€glucosidase level and are slowly digestible in vivo. FASEB Journal, 2013, 27, 1074.13.                                                                      | 0.5  | 0         |
| 169 | Longâ€ŧerm feeding of dietary slow release glucose reduces daily caloric food intake in vivo. FASEB<br>Journal, 2013, 27, 237.6.                                                                                                                          | 0.5  | 0         |
| 170 | Starch Source Influences Dietary Glucose Generation at the Mucosal α-Glucosidase Level. Journal of<br>Biological Chemistry, 2012, 287, 36917-36921.                                                                                                       | 3.4  | 48        |
| 171 | Starch Digestion and Patients With Congenital Sucraseâ€ <del>I</del> somaltase Deficiency. Journal of Pediatric<br>Gastroenterology and Nutrition, 2012, 55, S24-8.                                                                                       | 1.8  | 13        |
| 172 | Modulation of Starch Digestion for Slow Glucose Release through "Toggling―of Activities of<br>Mucosal α-Glucosidases. Journal of Biological Chemistry, 2012, 287, 31929-31938.                                                                            | 3.4  | 61        |
| 173 | Increasing and Stabilizing Î <sup>2</sup> -Sheet Structure of Maize Zein Causes Improvement in Its Rheological<br>Properties. Journal of Agricultural and Food Chemistry, 2012, 60, 2316-2321.                                                            | 5.2  | 40        |
| 174 | Functionalizing maize zein in viscoelastic dough systems through fibrous, Î <sup>2</sup> -sheet-rich protein<br>networks: AnÂalternative, physicochemical approach to gluten-free breadmaking. Trends in Food<br>Science and Technology, 2012, 24, 74-81. | 15.1 | 56        |
| 175 | Grain of high digestible, high lysine (HDHL) sorghum contains kafirins which enhance the protein network of composite dough and bread. Journal of Cereal Science, 2012, 56, 352-357.                                                                      | 3.7  | 34        |
| 176 | Unexpected High Digestion Rate of Cooked Starch by the Ct-Maltase-Glucoamylase Small Intestine<br>Mucosal α-Glucosidase Subunit. PLoS ONE, 2012, 7, e35473.                                                                                               | 2.5  | 43        |
| 177 | Gliadin and zein show similar and improved rheological behavior when mixed with high molecular weight glutenin. Journal of Cereal Science, 2012, 55, 265-271.                                                                                             | 3.7  | 39        |
| 178 | Modulation of starch digestion for slow glucose release through "toggling―of mucosal<br>αâ€glucosidases by acarbose. FASEB Journal, 2012, 26, 638.7.                                                                                                      | 0.5  | 0         |
| 179 | High-quality instant sorghum porridge flours for the West African market using continuous processor cooking. International Journal of Food Science and Technology, 2011, 46, 2344-2350.                                                                   | 2.7  | 16        |
| 180 | <i>In Vitro</i> â€,Batch Fecal Fermentation Comparison of Gas and Shortâ€Chain Fatty Acid Production<br>Using "Slowly Fermentable―Dietary Fibers. Journal of Food Science, 2011, 76, H137-42.                                                             | 3.1  | 123       |

| #   | Article                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Fine structural characteristics related to digestion properties of acidâ€treated fruit starches.<br>Starch/Staerke, 2011, 63, 717-727.                                                                                                                                                 | 2.1  | 24        |
| 182 | Slow release glucose in small intestine via dietary approach slows gastric emptying in vivo in a dose response fashion. FASEB Journal, 2011, 25, 93.6.                                                                                                                                 | 0.5  | 0         |
| 183 | Alphaâ€glucogenic activity of mammalian mucosal enzymes on different disaccharides. FASEB Journal, 2011, 25, 93.1.                                                                                                                                                                     | 0.5  | Ο         |
| 184 | Starch-entrapped microspheres show a beneficial fermentation profile and decrease in potentially harmful bacteria during <i>in vitro</i> fermentation in faecal microbiota obtained from patients with inflammatory bowel disease. British Journal of Nutrition, 2010, 103, 1514-1524. | 2.3  | 77        |
| 185 | REVIEW: Cereal Carbohydrates and Colon Health. Cereal Chemistry, 2010, 87, 331-341.                                                                                                                                                                                                    | 2.2  | 40        |
| 186 | Structural Differences among Alkali-Soluble Arabinoxylans from Maize ( <i>Zea mays</i> ), Rice<br>( <i>Oryza sativa</i> ), and Wheat ( <i>Triticum aestivum</i> ) Brans Influence Human Fecal Fermentation<br>Profiles. Journal of Agricultural and Food Chemistry, 2010, 58, 493-499. | 5.2  | 152       |
| 187 | Slowly digestible starch diets alter proximal glucosidase activity and glucose absorption. FASEB<br>Journal, 2010, 24, 231.4.                                                                                                                                                          | 0.5  | Ο         |
| 188 | Starchâ€entrapped microspheres extend <i>in vitro</i> fecal fermentation, increase butyrate<br>production, and influence microbiota pattern. Molecular Nutrition and Food Research, 2009, 53,<br>S121-30.                                                                              | 3.3  | 47        |
| 189 | Consumption of the slow-digesting waxy maize starch leads to blunted plasma glucose and insulin<br>response but does not influence energy expenditure or appetite in humans. Nutrition Research, 2009,<br>29, 383-390.                                                                 | 2.9  | 47        |
| 190 | Slowly Digestible Starch: Concept, Mechanism, and Proposed Extended Glycemic Index. Critical Reviews in Food Science and Nutrition, 2009, 49, 852-867.                                                                                                                                 | 10.3 | 341       |
| 191 | Starch-Entrapped Biopolymer Microspheres as a Novel Approach to Vary Blood Glucose Profiles.<br>Journal of the American College of Nutrition, 2009, 28, 583-590.                                                                                                                       | 1.8  | 38        |
| 192 | Genetic analysis of opaque2 modifier loci in quality protein maize. Theoretical and Applied Genetics, 2008, 117, 157-170.                                                                                                                                                              | 3.6  | 81        |
| 193 | An SECâ^'MALLS Study of Molecular Features of Waterâ€soluble Amylopectin and Amylose of Tef<br>[ <b><i>Eragrostis tef</i></b> (Zucc.) Trotter] Starches. Starch/Staerke, 2008, 60, 8-22.                                                                                               | 2.1  | 39        |
| 194 | Sorghum protein digestibility is affected by dosage of mutant alleles in endosperm cells. Plant<br>Breeding, 2008, 127, 579-586.                                                                                                                                                       | 1.9  | 13        |
| 195 | Slowly Digestible State of Starch: Mechanism of Slow Digestion Property of Gelatinized Maize Starch.<br>Journal of Agricultural and Food Chemistry, 2008, 56, 4695-4702.                                                                                                               | 5.2  | 122       |
| 196 | Carotenoid Bioaccessibility from Whole Grain and Degermed Maize Meal Products. Journal of<br>Agricultural and Food Chemistry, 2008, 56, 9918-9926.                                                                                                                                     | 5.2  | 118       |
| 197 | Nutritional Property of Endosperm Starches from Maize Mutants: A Parabolic Relationship between<br>Slowly Digestible Starch and Amylopectin Fine Structure. Journal of Agricultural and Food<br>Chemistry, 2008, 56, 4686-4694.                                                        | 5.2  | 180       |
| 198 | Luminal Starch Substrate "Brake―on Maltase-Glucoamylase Activity Is Located within the<br>Glucoamylase Subunit3. Journal of Nutrition, 2008, 138, 685-692.                                                                                                                             | 2.9  | 81        |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Contribution of Mucosal Maltaseâ€Glucoamylase to Mouse Small Intestinal Starch αâ€Glucogenesis and<br>Total Glucose Metabolism. FASEB Journal, 2008, 22, 686.2.                                       | 0.5 | 0         |
| 200 | Luminal Substrate "Brake―on Mucosal Maltase-glucoamylase Activity Regulates Total Rate of Starch<br>Digestion to Glucose. Journal of Pediatric Gastroenterology and Nutrition, 2007, 45, 32-43.       | 1.8 | 77        |
| 201 | Rice Amylopectin Fine Structure Variability Affects Starch Digestion Properties. Journal of Agricultural and Food Chemistry, 2007, 55, 1475-1479.                                                     | 5.2 | 156       |
| 202 | Starch with a Slow Digestion Property Produced by Altering Its Chain Length, Branch Density, and Crystalline Structure. Journal of Agricultural and Food Chemistry, 2007, 55, 4540-4547.              | 5.2 | 243       |
| 203 | Contribution of Mucosal Maltase-Glucoamylase Activities to Mouse Small Intestinal Starch<br>α-Glucogenesis3. Journal of Nutrition, 2007, 137, 1725-1733.                                              | 2.9 | 60        |
| 204 | Evidence of native starch degradation with human small intestinal maltaseâ€glucoamylase<br>(recombinant). FEBS Letters, 2007, 581, 2381-2388.                                                         | 2.8 | 58        |
| 205 | Similarities and differences in secondary structure of viscoelastic polymers of maize α-zein and wheat gluten proteins. Journal of Cereal Science, 2007, 45, 353-359.                                 | 3.7 | 101       |
| 206 | Influence of Dietary Fiber on Inflammatory Bowel Disease and Colon Cancer: Importance of Fermentation Pattern. Nutrition Reviews, 2007, 65, 51-62.                                                    | 5.8 | 139       |
| 207 | Biopolymerâ€entrapped starch microspheres as novel slowly digestible carbohydrate ingredients with moderated and extended glycemic response. FASEB Journal, 2007, 21, A344.                           | 0.5 | 2         |
| 208 | In vitro fecal fermentation of alginateâ€starch microspheres shows slow fermentation rate and increased production of butyrate. FASEB Journal, 2007, 21, A1101.                                       | 0.5 | 0         |
| 209 | Effect of Mouse Maltaseâ€glucoamylase (Mgam) Knockout on Starch Digestion to Glucose. FASEB<br>Journal, 2007, 21, .                                                                                   | 0.5 | 1         |
| 210 | Slow Digestion Property of Native Cereal Starches. Biomacromolecules, 2006, 7, 3252-3258.                                                                                                             | 5.4 | 368       |
| 211 | Structural Basis for the Slow Digestion Property of Native Cereal Starches. Biomacromolecules, 2006, 7, 3259-3266.                                                                                    | 5.4 | 201       |
| 212 | Development of a Low Glycemic Maize Starch:Â Preparation and Characterization. Biomacromolecules, 2006, 7, 1162-1168.                                                                                 | 5.4 | 78        |
| 213 | Cys155 of 27 kDa maize Î <sup>3</sup> -zein is a key amino acid to improve its in vitro digestibility. FEBS Letters, 2006,<br>580, 5803-5806.                                                         | 2.8 | 14        |
| 214 | Distinctive Sorghum Starch Granule Morphologies Appear to Improve Raw Starch Digestibility.<br>Starch/Staerke, 2006, 58, 92-99.                                                                       | 2.1 | 87        |
| 215 | Extent of decortication and quality of flour, couscous and porridge made from different sorghum cultivars. International Journal of Food Science and Technology, 2006, 41, 698-703.                   | 2.7 | 16        |
| 216 | Effect of Growth Location in the United States on Amylose Content, Amylopectin Fine Structure, and<br>Thermal Properties of Starches of Long Grain Rice Cultivars. Cereal Chemistry, 2006, 83, 93-98. | 2.2 | 42        |

| #   | Article                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | A Novel Modified Endosperm Texture in a Mutant High-Protein Digestibility/High-Lysine Grain Sorghum<br>(Sorghum bicolor(L.) Moench). Cereal Chemistry, 2006, 83, 194-201. | 2.2 | 40        |
| 218 | Sorghum (Sorghum bicolor L. Moench) Flour Pasting Properties Influenced by Free Fatty Acids and Protein. Cereal Chemistry, 2005, 82, 534-540.                             | 2.2 | 67        |
| 219 | Detection of Proteins in Starch Granule Channels. Cereal Chemistry, 2005, 82, 351-355.                                                                                    | 2.2 | 83        |
| 220 | Slowly Digestible Starch from Debranched Waxy Sorghum Starch: Preparation and Properties. Cereal Chemistry, 2004, 81, 404-408.                                            | 2.2 | 109       |
| 221 | Isolation and Characterization of a Soluble Branched Starch Fraction from Corn Masa Associated with Adhesiveness. Cereal Chemistry, 2003, 80, 693-698.                    | 2.2 | 7         |
| 222 | Turbidity Assay for Rapid and Efficient Identification of High Protein Digestibility Sorghum Lines.<br>Cereal Chemistry, 2003, 80, 40-44.                                 | 2.2 | 15        |
| 223 | Corn Dry-Milled Grit and Flour Fractions Exhibit Differences in Amylopectin Fine Structure and Gel<br>Texture. Cereal Chemistry, 2002, 79, 354-358.                       | 2.2 | 13        |
| 224 | Consequence of Starch Damage on Rheological Properties of Maize Starch Pastes. Cereal Chemistry, 2002, 79, 897-901.                                                       | 2.2 | 49        |
| 225 | Association of Starch Granule Proteins with Starch Ghosts and Remnants Revealed by Confocal Laser<br>Scanning Microscopy. Cereal Chemistry, 2002, 79, 892-896.            | 2.2 | 59        |
| 226 | Partial Leaching of Granule-Associated Proteins from Rice Starch during Alkaline Extraction and<br>Subsequent Gelatinization. Starch/Staerke, 2002, 54, 454-460.          | 2.1 | 45        |
| 227 | Interaction of maize zein with wheat gluten in composite dough and bread as determined by confocal laser scanning microscopy. Scanning, 2002, 24, 1-5.                    | 1.5 | 29        |
| 228 | A Rapid Protein Digestibility Assay for Identifying Highly Digestible Sorghum Lines. Cereal Chemistry, 2001, 78, 160-165.                                                 | 2.2 | 49        |
| 229 | Improvement of Sorghum-Wheat Composite Dough Rheological Properties and Breadmaking Quality<br>Through Zein Addition. Cereal Chemistry, 2001, 78, 31-35.                  | 2.2 | 41        |
| 230 | Proteolytic Activity in Sorghum Flour and Its Interference in Protein Analysis. Cereal Chemistry, 2000, 77, 343-344.                                                      | 2.2 | 2         |
| 231 | Physicochemical Properties of Flours that Relate to Sorghum Couscous Quality. Cereal Chemistry, 1999, 76, 308-313.                                                        | 2.2 | 35        |
| 232 | Effect of Specific Mechanical Energy on Protein Bodies and α-Zeins in Corn Flour Extrudates. Cereal<br>Chemistry, 1999, 76, 316-320.                                      | 2.2 | 37        |
| 233 | Potential nutritional contribution of quality protein maize: A closeâ€up on children in poor<br>communities*. Ecology of Food and Nutrition, 1999, 38, 165-182.           | 1.6 | 5         |
| 234 | Microstructural changes in zein proteins during extrusion. Scanning, 1999, 21, 212-216.                                                                                   | 1.5 | 23        |

| #   | Article                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Low α-Amylase Starch Digestibility of Cooked Sorghum Flours and the Effect of Protein. Cereal Chemistry, 1998, 75, 710-713.                                                                   | 2.2 | 103       |
| 236 | Changes Occurring in Protein Body Structure and α-Zein During Cornflake Processing. Cereal<br>Chemistry, 1998, 75, 217-221.                                                                   | 2.2 | 57        |
| 237 | Discovery of Grain Sorghum Germ Plasm with High Uncooked and Cooked In Vitro Protein<br>Digestibilities. Cereal Chemistry, 1998, 75, 665-670.                                                 | 2.2 | 82        |
| 238 | Effect of Lime on Gelatinization of Corn Flour and Starch. Cereal Chemistry, 1997, 74, 171-175.                                                                                               | 2.2 | 96        |
| 239 | Responses to Selection for Endosperm Hardness and Associated Changes in Agronomic Traits after Four Cycles of Recurrent Selection in Maize. Crop Science, 1995, 35, 745-748.                  | 1.8 | 7         |
| 240 | Registration of H126w Whiteâ€Endosperm Parental Inbred Line of Maize. Crop Science, 1995, 35, 1243-1244.                                                                                      | 1.8 | 0         |
| 241 | Registration of H125 Yellowâ€Endosperm Parental Inbred Line of Maize. Crop Science, 1995, 35, 1242-1243.                                                                                      | 1.8 | 3         |
| 242 | Registration of HQPSSS and HQPSCB Maize Germplasm. Crop Science, 1995, 35, 1720-1720.                                                                                                         | 1.8 | 0         |
| 243 | Distribution of B-6 vitamers in human milk during a 24-h period after oral supplementation with different amounts of pyridoxine. American Journal of Clinical Nutrition, 1990, 51, 1062-1066. | 4.7 | 14        |
| 244 | Improving the in vitro protein digestibility of sorghum with reducing agents. Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 626-628.             | 7.1 | 167       |
| 245 | Digestibility and Utilization of Protein and Energy from Nasha, a Traditional Sudanese Fermented<br>Sorghum Weaning Food. Journal of Nutrition, 1986, 116, 978-984.                           | 2.9 | 41        |