
Furqan Jameel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7617467/publications.pdf Version: 2024-02-01

FUDOAN LAMEEL

#	Article	IF	CITATIONS
1	Joint optimization for secure ambient backscatter communication in NOMA-enabled IoT networks. Digital Communications and Networks, 2023, 9, 264-269.	5.0	10
2	Learning-Based Resource Allocation for Backscatter-Aided Vehicular Networks. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 19676-19690.	8.0	32
3	Secure Transmission in Cellular V2X Communications Using Deep Q-Learning. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 17167-17176.	8.0	8
4	Efficient Mining Cluster Selection for Blockchain-Based Cellular V2X Communications. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 4064-4072.	8.0	26
5	Efficient Power-Splitting and Resource Allocation for Cellular V2X Communications. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 3547-3556.	8.0	40
6	Backscatter-Enabled Efficient V2X Communication With Non-Orthogonal Multiple Access. IEEE Transactions on Vehicular Technology, 2021, 70, 1724-1735.	6.3	62
7	Joint Spectrum and Energy Optimization of NOMA-Enabled Small-Cell Networks With QoS Guarantee. IEEE Transactions on Vehicular Technology, 2021, 70, 8337-8342.	6.3	30
8	Multi-tone Carrier Backscatter Communications for Massive IoT Networks. Internet of Things, 2021, , 39-50.	1.7	5
9	Time Slot Management in Backscatter Systems for Large-Scale IoT Networks. Internet of Things, 2021, , 51-65.	1.7	4
10	Performance Analysis of Cooperative V2V and V2I Communications Under Correlated Fading. IEEE Transactions on Intelligent Transportation Systems, 2020, 21, 3476-3484.	8.0	35
11	Performance Analysis of Downlink NOMA Systems Over \$kappa\$-\$mu\$ Shadowed Fading Channels. IEEE Transactions on Vehicular Technology, 2020, 69, 1046-1050.	6.3	56
12	Joint Spectral and Energy Efficiency Optimization for Downlink NOMA Networks. IEEE Transactions on Cognitive Communications and Networking, 2020, 6, 645-656.	7.9	80
13	Performance Evaluation of Relay-Aided CR-NOMA for Beyond 5G Communications. IEEE Access, 2020, 8, 134838-134855.	4.2	49
14	Reinforcement Learning for Scalable and Reliable Power Allocation in SDN-based Backscatter Heterogeneous Network. , 2020, , .		18
15	Rogue Device Mitigation in the Internet of Things: A Blockchain-Based Access Control Approach. Mobile Information Systems, 2020, 2020, 1-13.	0.6	1
16	Multiobjective Optimization of Uplink NOMA-Enabled Vehicle-to-Infrastructure Communication. IEEE Access, 2020, 8, 84467-84478.	4.2	30
17	Reinforcement Learning in Blockchain-Enabled IIoT Networks: A Survey of Recent Advances and Open Challenges. Sustainability, 2020, 12, 5161.	3.2	48
18	Efficient power allocation for NOMA-enabled IoT networks in 6G era. Physical Communication, 2020, 39, 101043.	2.1	64

FURQAN JAMEEL

#	Article	IF	CITATIONS
19	Optimizing Blockchain Networks with Artificial Intelligence: Towards Efficient and Reliable IoT Applications. Internet of Things, 2020, , 299-321.	1.7	10
20	NOMA-Enabled Backscatter Communications: Toward Battery-Free IoT Networks. IEEE Internet of Things Magazine, 2020, 3, 95-101.	2.6	44
21	Spectral Efficiency Optimization for Next Generation NOMA-Enabled IoT Networks. IEEE Transactions on Vehicular Technology, 2020, 69, 15284-15297.	6.3	76
22	Machine Learning Techniques for Wireless-Powered Ambient Backscatter Communications: Enabling Intelligent IoT Networks in 6G Era. Internet of Things, 2020, , 187-211.	1.7	6
23	Efficient Mode Selection for D2D Communication in Industrial IoT Networks. , 2020, , .		1
24	A Comprehensive Survey on Cooperative Relaying and Jamming Strategies for Physical Layer Security. IEEE Communications Surveys and Tutorials, 2019, 21, 2734-2771.	39.4	181
25	Joint Power Allocation and Link Selection for Multi-Carrier Buffer Aided Relay Network. Electronics (Switzerland), 2019, 8, 686.	3.1	37
26	Simultaneous harvest-and-transmit ambient backscatter communications under Rayleigh fading. Eurasip Journal on Wireless Communications and Networking, 2019, 2019, .	2.4	39
27	Internet of Autonomous Vehicles: Architecture, Features, and Socio-Technological Challenges. IEEE Wireless Communications, 2019, 26, 21-29.	9.0	48
28	Propagation Channels for mmWave Vehicular Communications: State-of-the-art and Future Research Directions. IEEE Wireless Communications, 2019, 26, 144-150.	9.0	74
29	Physical Layer Security of Energy Harvesting Machine-to-Machine Communication System. , 2019, , 123-153.		2
30	Towards Intelligent IoT Networks: Reinforcement Learning for Reliable Backscatter Communications. , 2019, , .		24
31	Applications of Backscatter Communications for Healthcare Networks. IEEE Network, 2019, 33, 50-57.	6.9	84
32	Power Allocation and User Assignment Scheme for beyond 5G Heterogeneous Networks. Wireless Communications and Mobile Computing, 2019, 2019, 1-11.	1.2	22
33	On secrecy performance of industrial Internet of things. Internet Technology Letters, 2018, 1, e32.	1.9	17
34	Secure Communications in Three-Step Two-Way Energy Harvesting DF Relaying. IEEE Communications Letters, 2018, 22, 308-311.	4.1	30
35	A Survey of Device-to-Device Communications: Research Issues and Challenges. IEEE Communications Surveys and Tutorials, 2018, 20, 2133-2168.	39.4	402
36	Impact of co-channel interference on the performance of VANETs under <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si40.gif"</mml:math 	2.9	15

36 overflow="scroll"><mml:mrow><mml:mi>î±</mml:mi><mml:mo>-</mml:mo><mml:mi>î¼</mml:mi></mml:mi></mml:mo></mml:mi>î¼</mml:mi></mml:mi></mml:math>fading.
AEU - International Journal of Electronics and Communications, 2018, 83, 263-269.

Furqan Jameel

#	Article	IF	CITATIONS
37	Operator Revenue Analysis for Device-to-Device Communications Overlaying Cellular Network. , 2018, ,		7
38	Interference-Aided Vehicular Networks: Future Research Opportunities and Challenges. IEEE Communications Magazine, 2018, 56, 36-42.	6.1	28
39	Wireless Social Networks: A Survey of Recent Advances, Applications and Challenges. IEEE Access, 2018, 6, 59589-59617.	4.2	20
40	Secure communication for separated and integrated receiver architectures in SWIPT. , 2018, , .		6
41	High SNR analysis of inter-body interference in Body Area Networks. , 2017, , .		2
42	Performance analysis of VANETs under Rayleigh, Rician, Nakagami-m and Weibull fading. , 2017, , .		13
43	Secrecy Outage for Wireless Sensor Networks. IEEE Communications Letters, 2017, 21, 1565-1568.	4.1	31
44	Massive MIMO: A survey of recent advances, research issues and future directions. , 2017, , .		22
45	Network security challenges in smart grid. , 2016, , .		4
46	Optimal time switching and power splitting in SWIPT. , 2016, , .		4
47	Analysis of Co-Channel Interference in VANETs under Nakagami-m Fading. , 2016, , .		2
48	Analysis of interference in body area networks over generalized fading. , 2016, , .		4