Honglin Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7617166/publications.pdf

Version: 2024-02-01

75

all docs

74 2,692 31
papers citations h-index

75

docs citations

h-index g-index

75 3292
times ranked citing authors

189892

50

#	Article	IF	CITATIONS
1	Three-Dimensional and Time-Ordered Surface-Enhanced Raman Scattering Hotspot Matrix. Journal of the American Chemical Society, 2014, 136, 5332-5341.	13.7	293
2	A dynamic surface enhanced Raman spectroscopy method for ultra-sensitive detection: from the wet state to the dry state. Chemical Society Reviews, 2015, 44, 2837-2848.	38.1	162
3	Liquid-state quantitative SERS analyzer on self-ordered metal liquid-like plasmonic arrays. Nature Communications, 2018, 9, 3642.	12.8	140
4	Portable Kit for Identification and Detection of Drugs in Human Urine Using Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2015, 87, 9500-9506.	6. 5	106
5	Elucidation and Structural Modeling of CD71 as a Molecular Target for Cell-Specific Aptamer Binding. Journal of the American Chemical Society, 2019, 141, 10760-10769.	13.7	106
6	Three-Dimensional Surface-Enhanced Raman Scattering Hotspots in Spherical Colloidal Superstructure for Identification and Detection of Drugs in Human Urine. Analytical Chemistry, 2015, 87, 4821-4828.	6.5	86
7	Surface-Enhanced Raman Spectroscopy on Liquid Interfacial Nanoparticle Arrays for Multiplex Detecting Drugs in Urine. Analytical Chemistry, 2016, 88, 8145-8151.	6.5	85
8	Hypoxia-Activated PEGylated Conditional Aptamer/Antibody for Cancer Imaging with Improved Specificity. Journal of the American Chemical Society, 2019, 141, 18421-18427.	13.7	85
9	Bioinspired Multifunctional Hetero-Hierarchical Micro/Nanostructure Tetragonal Array with Self-Cleaning, Anticorrosion, and Concentrators for the SERS Detection. ACS Applied Materials & Lamp; Interfaces, 2013, 5, 10633-10642.	8.0	77
10	Assembly of polymer–gold nanostructures with high reproducibility into a monolayer film SERS substrate with 5 nm gaps for pesticide trace detection. Analyst, The, 2013, 138, 5832.	3. 5	72
11	Three-dimensional SERS hot spots for chemical sensing: Towards developing a practical analyzer. TrAC - Trends in Analytical Chemistry, 2016, 80, 364-372.	11.4	69
12	Sensitive and selective SERS probe for trivalent chromium detection using citrate attached gold nanoparticles. Nanoscale, 2012, 4, 6442.	5.6	67
13	Metastable state nanoparticle-enhanced Raman spectroscopy for highly sensitive detection. Chemical Communications, 2011, 47, 3583.	4.1	64
14	Capillarity-constructed reversible hot spots for molecular trapping inside silver nanorod arrays light up ultrahigh SERS enhancement. Chemical Science, 2013, 4, 3490.	7.4	62
15	Functionalized shell-isolated nanoparticle-enhanced Raman spectroscopy for selective detection of trinitrotoluene. Analyst, The, 2012, 137, 4644.	3.5	60
16	Organic Solvent as Internal Standards for Quantitative and High-Throughput Liquid Interfacial SERS Analysis in Complex Media. Analytical Chemistry, 2018, 90, 5232-5238.	6.5	54
17	Ultrasensitive optical detection of trinitrotoluene by ethylenediamine-capped gold nanoparticles. Analytica Chimica Acta, 2012, 744, 92-98.	5.4	53
18	Non-ultraviolet photocatalytic kinetics of NaYF ₄ :Yb,Tm@TiO ₂ /Ag core@comby shell nanostructures. Journal of Materials Chemistry A, 2015, 3, 14642-14650.	10.3	52

#	Article	IF	CITATIONS
19	Polystyrene/Ag nanoparticles as dynamic surface-enhanced Raman spectroscopy substrates for sensitive detection of organophosphorus pesticides. Talanta, 2014, 127, 269-275.	5.5	51
20	Solvent-induced hot spot switch on silver nanorod enhanced Raman spectroscopy. Analyst, The, 2012, 137, 1547.	3.5	44
21	Designing and fabricating of surface-enhanced Raman scattering substrate with high density hot spots by polyaniline template-assisted self-assembly. Nanoscale, 2012, 4, 6449.	5.6	43
22	Cetylpyridinium Chloride Activated Trinitrotoluene Explosive Lights Up Robust and Ultrahigh Surfaceâ€Enhanced Resonance Raman Scattering in a Silver Sol. Chemistry - A European Journal, 2013, 19, 8789-8796.	3.3	39
23	A displacement principle for mercury detection by optical waveguide and surface enhanced Raman spectroscopy. Journal of Colloid and Interface Science, 2012, 386, 451-455.	9.4	38
24	Study on the synthesis of Ag/AgCl nanoparticles and their photocatalytic properties. Materials Research Bulletin, 2012, 47, 3452-3458.	5.2	38
25	Self-Nucleation and Self-Assembly of Highly Fluorescent Au ₅ Nanoclusters for Bioimaging. Chemistry of Materials, 2018, 30, 5507-5515.	6.7	38
26	Molecular sensitivity of DNA–Ag–PATP hybrid on optical activity for ultratrace mercury analysis. Chemical Communications, 2011, 47, 9360.	4.1	36
27	Three-dimensional hotspots in evaporating nanoparticle sols for ultrahigh Raman scattering: solid–liquid interface effects. Nanoscale, 2015, 7, 6619-6626.	5.6	36
28	Direct Discrimination of Edible Oil Type, Oxidation, and Adulteration by Liquid Interfacial Surface-Enhanced Raman Spectroscopy. ACS Sensors, 2019, 4, 1798-1805.	7.8	36
29	Simultaneous Microcystin Degradation and <i>Microcystis aeruginosa</i> Inhibition with the Single Enzyme Microcystinase A. Environmental Science & Enzyme Microcystinase A. Environmental	10.0	36
30	Speedy and surfactant-free in situ synthesis of nickel/Ag nanocomposites for reproducible SERS substrates. Journal of Materials Chemistry, 2012, 22, 19932.	6.7	33
31	Breaking the Affinity Limit with Dual-Phase-Accessible Hotspot for Ultrahigh Raman Scattering of Nonadsorptive Molecules. Analytical Chemistry, 2020, 92, 6941-6948.	6.5	33
32	Quantitative determination of peroxide value of edible oil by algorithm-assisted liquid interfacial surface enhanced Raman spectroscopy. Food Chemistry, 2021, 344, 128709.	8.2	32
33	In Situ Photoreduced Silver Nanoparticles on Cysteine: An Insight into the Origin of Chirality. Chemistry - A European Journal, 2012, 18, 8037-8041.	3.3	29
34	The time-resolved D-SERS vibrational spectra of pesticide thiram. Talanta, 2013, 117, 39-44.	5. 5	28
35	SERS and OWGS detection of dynamic trapping molecular TNT based on a functional self-assembly Au monolayer film. Analyst, The, 2013, 138, 1858.	3.5	26
36	Self-Healing Plasmonic Metal Liquid as a Quantitative Surface-Enhanced Raman Scattering Analyzer in Two-Liquid-Phase Systems. Analytical Chemistry, 2019, 91, 2288-2295.	6.5	25

#	Article	IF	CITATIONS
37	A hanging plasmonic droplet: three-dimensional SERS hotspots for a highly sensitive multiplex detection of amino acids. Analyst, The, 2015, 140, 2973-2978.	3.5	24
38	Sensitive and selective SERS probe for $Hg(II)$ detection using aminated ring-close structure of Rhodamine 6G. Talanta, 2013, 106, 381-387.	5 . 5	22
39	Quality alert from direct discrimination of polycyclic aromatic hydrocarbons in edible oil by liquid-interfacial surface-enhanced Raman spectroscopy. LWT - Food Science and Technology, 2021, 143, 111143.	5. 2	21
40	Mirrorlike Plasmonic Capsules for Online Microfluidic Raman Analysis of Drug in Human Saliva and Urine. ACS Applied Bio Materials, 2019, 2, 3828-3835.	4.6	20
41	Highly-reproducible Raman scattering of NaYF ₄ :Yb,Er@SiO ₂ @Ag for methylamphetamine detection under near-infrared laser excitation. Analyst, The, 2015, 140, 5268-5275.	3.5	18
42	DNA-Capped Silver Nanoflakes as Fluorescent Nanosensor for Highly Sensitive Imaging of Endogenous H ₂ S in Cell Division Cycles. Analytical Chemistry, 2019, 91, 15404-15410.	6.5	16
43	Tunable plasmonics of hollow raspberry-like nanogold for the robust Raman scattering detection of antibiotics on a portable Raman spectrometer. Analyst, The, 2020, 145, 5854-5860.	3.5	16
44	Surfaceâ€enhanced Raman evidence for Rhodamine 6 G and its derivative with different adsorption geometry to colloidal silver nanoparticle. Journal of Raman Spectroscopy, 2013, 44, 999-1003.	2.5	15
45	Engineering a customized nanodrug delivery system at the cellular level for targeted cancer therapy. Science China Chemistry, 2018, 61, 497-504.	8.2	15
46	Cross-linking structure-induced strong blue emissive gold nanoclusters for intracellular sensing. Analyst, The, 2019, 144, 2765-2772.	3.5	15
47	Raman scattering and plasmonic photocatalysis of single particles of NaYF ₄ :Yb,Er@Ag under near-infrared laser excitation. Analyst, The, 2014, 139, 5983-5988.	3.5	14
48	Conformational sensitivity of surface selection rules for quantitative Raman identification of small molecules in biofluids. Nanoscale, 2018, 10, 14342-14351.	5.6	13
49	Can "Hot Spots―Be Stable Enough for Surface-Enhanced Raman Scattering?. Journal of Physical Chemistry C, 2021, 125, 13443-13448.	3.1	11
50	N114S mutation causes loss of ATP-induced aggregation of human phosphoribosylpyrophosphate synthetase 1. Biochemical and Biophysical Research Communications, 2009, 379, 1120-1125.	2.1	10
51	Design, synthesis and biological evaluation of novel inhibitors against cyanobacterial pyruvate dehydrogenase multienzyme complex E1. Bioorganic and Medicinal Chemistry, 2019, 27, 2413-2420.	3.0	10
52	Hot spots in photoreduced Au nanoparticles on DNA scaffolds potent for robust and high-sensitive surface-enhanced Raman scattering substrates. Materials Chemistry and Physics, 2013, 138, 573-580.	4.0	9
53	Structure optimization and bioactivity evaluation of ThDP analogs targeting cyanobacterial pyruvate dehydrogenase E1. Bioorganic and Medicinal Chemistry, 2019, 27, 115159.	3.0	9
54	Halide-assisted activation of atomic hydrogen for photoreduction on two-liquid interfacial plasmonic arrays. Chemical Communications, 2019, 55, 1422-1425.	4.1	9

#	Article	IF	CITATIONS
55	Pinpointing Alkane Chain Length, Saturation, and Double Bond Regio- and Stereoisomers by Liquid Interfacial Plasmonic Enhanced Raman Spectroscopy. Analytical Chemistry, 2022, 94, 2891-2900.	6.5	9
56	Antifreezing Hydroxyl Monolayer of Small Molecules on a Nanogold Surface. Nano Letters, 2022, 22, 5307-5315.	9.1	9
57	ATP-induced noncooperative thermal unfolding of hen lysozyme. Biochemical and Biophysical Research Communications, 2010, 397, 598-602.	2.1	8
58	Unravelling the Relationship between Raman Enhancement and Photocatalytic Activity on Single Anisotropic Au Microplates. Chemistry - A European Journal, 2014, 20, 10414-10424.	3.3	8
59	Tracking structural changes of protein residues by two-dimensional correlation surface-enhanced Raman spectroscopy. Food Chemistry, 2022, 382, 132237.	8.2	8
60	Highly luminescent gold nanocluster assemblies for bioimaging in living organisms. Chemical Communications, 2022, 58, 811-814.	4.1	8
61	Surface motif sensitivity of dual emissive gold nanoclusters for robust ratiometric intracellular imaging. Chemical Communications, 2020, 56, 7112-7115.	4.1	7
62	Transformation of thiolated chitosan-templated gold nanoparticles to huge microcubes. Materials Research Bulletin, 2014, 53, 89-95.	5.2	6
63	Highly stable surface-enhanced Raman spectroscopy assay on abnormal thrombin levels in the blood plasma of cancer patients. Analytical Methods, 2021, 13, 4328-4333.	2.7	6
64	Gold nanocluster-based ratiometric fluorescent probe for biosensing of Hg ²⁺ ions in living organisms. Analyst, The, 2022, 147, 2773-2778.	3.5	6
65	Plasma- and anneal-assisted hybridization of SWCNT-Au network for rapid and high-sensitive electrical detection of antibody-antigen interactions. Journal of Materials Chemistry, 2012, 22, 6139.	6.7	4
66	Engineering Grey Nanosystem as Activatable Ratio-colorimetric Probe for Detection of Lead Ions in Preserved Egg. Analytical Sciences, 2020, 36, 1407-1413.	1.6	3
67	Multi-analyte High-Throughput Microplate-SERS Reader with Controllable Liquid Interfacial Arrays. Analytical Chemistry, 2022, 94, 7528-7535.	6.5	3
68	Trinitarian quantitative analysis of the continuous organic phase and built-in tags as internal standards for two-liquid interfacial surface-enhanced Raman spectroscopy. Journal of Materials Chemistry C, 2020, 8, 13213-13219.	5.5	2
69	Pinpointing photothermal contributions in photochemical reactions on plasmonic gold nanoparticles. Chemical Communications, 2022, 58, 1720-1723.	4.1	2
70	Programmable Oligonucleotide-Peptide Complexes: Synthesis and Applications. Chemical Research in Chinese Universities, 0 , 1 .	2.6	1
71	DNAzyme signal amplification based on Au@Ag core–shell nanorods for highly sensitive SERS sensing miRNA-21. Analytical and Bioanalytical Chemistry, 2022, 414, 4079-4088.	3.7	1
72	Synchrotron radiation circular dichroism: a new tool for identification of point-mutation protein. Procedia Engineering, 2010, 7, 143-146.	1.2	0

#	Article	IF	CITATIONS
73	lodide etching for one-step quantitative assay of the number of DNA molecules capped on gold nanoparticles. Analytical Methods, 2022, 14, 1232-1238.	2.7	O
74	Antimicrobial properties of metal nanoclusters. , 2022, , 537-568.		0