Fabrice Vavre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7616737/publications.pdf

Version: 2024-02-01

78	5,788	40	72
papers	citations	h-index	g-index
82	82	82	4395
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cytotype Affects the Capability of the Whitefly Bemisia tabaci MED Species To Feed and Oviposit on an Unfavorable Host Plant. MBio, 2021, 12, e0073021.	4.1	3
2	Endosymbiont diversity in natural populations of Tetranychus mites is rapidly lost under laboratory conditions. Heredity, 2020, 124, 603-617.	2.6	12
3	Back and forth <i>Wolbachia</i> transfers reveal efficient strains to control spotted wing drosophila populations. Journal of Applied Ecology, 2018, 55, 2408-2418.	4.0	33
4	Cancer Is Not (Only) a Senescence Problem. Trends in Cancer, 2018, 4, 169-172.	7.4	15
5	Impact of pest management practices on the frequency of insecticide resistance alleles in Bemisia tabaci (Hemiptera: Aleyrodidae) populations in three countries of West Africa. Crop Protection, 2018, 104, 86-91.	2.1	10
6	The Importance of Revisiting Legionellales Diversity. Trends in Parasitology, 2018, 34, 1027-1037.	3.3	26
7	Tick-Bacteria Mutualism Depends on B Vitamin Synthesis Pathways. Current Biology, 2018, 28, 1896-1902.e5.	3.9	246
8	Abundance of <i>Bemisia tabaci</i> Gennadius (Hemiptera: Aleyrodidae) and its parasitoids on vegetables and cassava plants in Burkina Faso (West Africa). Ecology and Evolution, 2018, 8, 6091-6103.	1.9	17
9	Obligate dependence does not preclude changing partners in a Russian dolls symbiotic system. Peer Community in Evolutionary Biology, 2018, , .	0.0	O
10	Evolutionary changes in symbiont community structure in ticks. Molecular Ecology, 2017, 26, 2905-2921.	3.9	187
11	Influence of Microbial Symbionts on Plant–Insect Interactions. Advances in Botanical Research, 2017, , 225-257.	1.1	40
12	Impact of Wolbachia on oxidative stress sensitivity in the parasitic wasp Asobara japonica. PLoS ONE, 2017, 12, e0175974.	2.5	3
13	SNP calling from RNA-seq data without a reference genome: identification, quantification, differential analysis and impact on the protein sequence. Nucleic Acids Research, 2016, 44, gkw655.	14.5	66
14	Influence of oxidative homeostasis on bacterial density and cost of infection in <i>Drosophila</i> – <i>Wolbachia</i> symbioses. Journal of Evolutionary Biology, 2016, 29, 1211-1222.	1.7	14
15	Spodoptera frugiperda (Lepidoptera: Noctuidae) host-plant variants: two host strains or two distinct species?. Genetica, 2015, 143, 305-316.	1.1	117
16	Two Host Clades, Two Bacterial Arsenals: Evolution through Gene Losses in Facultative Endosymbionts. Genome Biology and Evolution, 2015, 7, 839-855.	2.5	26
17	The Recent Evolution of a Maternally-Inherited Endosymbiont of Ticks Led to the Emergence of the Q Fever Pathogen, Coxiella burnetii. PLoS Pathogens, 2015, 11, e1004892.	4.7	218
18	Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci. BMC Genomics, 2015, 16, 226.	2.8	100

#	Article	IF	CITATIONS
19	Parasite–Parasite Interactions in the Wild: How To Detect Them?. Trends in Parasitology, 2015, 31, 640-652.	3.3	88
20	Detection of genetically isolated entities within the Mediterranean species of <i>Bemisia tabaci</i> new insights into the systematics of this worldwide pest. Pest Management Science, 2015, 71, 452-458.	3.4	16
21	The Genome of Cardinium cBtQ1 Provides Insights into Genome Reduction, Symbiont Motility, and Its Settlement in Bemisia tabaci. Genome Biology and Evolution, 2014, 6, 1013-1030.	2.5	68
22	Epidemiology of asexuality induced by the endosymbiotic <i>Wolbachia</i> across phytophagous wasp species: host plant specialization matters. Molecular Ecology, 2014, 23, 2362-2375.	3.9	29
23	Signs of Neutralization in a Redundant Gene Involved in Homologous Recombination in Wolbachia Endosymbionts. Genome Biology and Evolution, 2014, 6, 2654-2664.	2.5	10
24	Manipulation of Arthropod Sex Determination by Endosymbionts: Diversity and Molecular Mechanisms. Sexual Development, 2014, 8, 59-73.	2.0	44
25	Microbial impacts on insect evolutionary diversification: from patterns to mechanisms. Current Opinion in Insect Science, 2014, 4, 29-34.	4.4	39
26	Distribution of <i>Bemisia tabaci</i> (Homoptera: Aleyrodidae) biotypes and their associated symbiotic bacteria on host plants in West Africa. Insect Conservation and Diversity, 2013, 6, 411-421.	3.0	66
27	Endosymbiont diversity among sibling weevil species competing for the same resource. BMC Evolutionary Biology, 2013, 13, 28.	3.2	20
28	Biotype status and resistance to neonicotinoids and carbosulfan in <i>Bemisia tabaci</i> (Hemiptera:) Tj ETQq0 C	0 0 rgBT /C	verlock 10 Tf
29	Distribution of Endosymbiotic Reproductive Manipulators Reflects Invasion Process and Not Reproductive System Polymorphism in the Little Fire Ant Wasmannia auropunctata. PLoS ONE, 2013, 8, e58467.	2.5	26
30	Complete Genome Sequence of "Candidatus Portiera aleyrodidarum―BT-QVLC, an Obligate Symbiont That Supplies Amino Acids and Carotenoids to Bemisia tabaci. Journal of Bacteriology, 2012, 194, 6654-6655.	2.2	80
31	Making (good) use of Wolbachia: what the models say. Current Opinion in Microbiology, 2012, 15, 263-268.	5.1	41
32	Influence of the Virus LbFV and of Wolbachia in a Host-Parasitoid Interaction. PLoS ONE, 2012, 7, e35081.	2.5	26
33	Influence of Wolbachia on host gene expression in an obligatory symbiosis. BMC Microbiology, 2012, 12, S7.	3.3	63
34	Bacterial symbionts in insects or the story of communities affecting communities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 1389-1400.	4.0	285
35	Intraspecific specialization of the generalist parasitoid <i>Cotesia sesamiae</i> revealed by polyDNAvirus polymorphism and associated with different <i>Wolbachia</i> infection. Molecular Ecology, 2011, 20, 959-971.	3.9	61
36	Does a parthenogenesis-inducing Wolbachia induce vestigial cytoplasmic incompatibility?. Die Naturwissenschaften, 2011, 98, 175-180.	1.6	15

#	Article	IF	CITATIONS
37	Intragenomic conflict in populations infected by Parthenogenesis Inducing Wolbachia ends with irreversible loss of sexual reproduction. BMC Evolutionary Biology, 2010, 10, 229.	3.2	44
38	Endosymbiont metacommunities, mtDNA diversity and the evolution of the Bemisia tabaci (Hemiptera:) Tj ETQ	q0 0 _{3.9} rgB	T /Oyerlock 10
39	DO VARIABLE COMPENSATORY MECHANISMS EXPLAIN THE POLYMORPHISM OF THE DEPENDENCE PHENOTYPE IN THE ASOBARA TABIDA-WOLBACHIA ASSOCIATION?. Evolution; International Journal of Organic Evolution, 2010, 64, no-no.	2.3	17
40	The Transmission Efficiency of <i>Tomato Yellow Leaf Curl Virus</i> by the Whitefly <i>Bemisia tabaci</i> Is Correlated with the Presence of a Specific Symbiotic Bacterium Species. Journal of Virology, 2010, 84, 9310-9317.	3.4	277
41	Wolbachia Interferes with Ferritin Expression and Iron Metabolism in Insects. PLoS Pathogens, 2009, 5, e1000630.	4.7	164
42	Maintenance of adaptive differentiation by Wolbachia induced bidirectional cytoplasmic incompatibility: the importance of sib-mating and genetic systems. BMC Evolutionary Biology, 2009, 9, 185.	3.2	19
43	Immunity and symbiosis. Molecular Microbiology, 2009, 73, 751-759.	2.5	80
44	A new case of Wolbachia dependence in the genus Asobara: evidence for parthenogenesis induction in Asobara japonica. Heredity, 2009, 103, 248-256.	2.6	73
45	Molecular detection and identification of Rickettsia endosymbiont in different biotypes of Bemisia tabaci. Clinical Microbiology and Infection, 2009, 15, 271-272.	6.0	5
46	Interactions between vertically transmitted symbionts: cooperation or conflict?. Trends in Microbiology, 2009, 17, 95-99.	7.7	90
47	Chapter 12 Drosophila–Parasitoid Communities as Model Systems for Host–Wolbachia Interactions. Advances in Parasitology, 2009, 70, 299-331.	3.2	14
48	Do vertically transmitted symbionts coâ€existing in a single host compete or cooperate? A modelling approach. Journal of Evolutionary Biology, 2008, 21, 145-161.	1.7	29
49	Intense Transpositional Activity of Insertion Sequences in an Ancient Obligate Endosymbiont. Molecular Biology and Evolution, 2008, 25, 1889-1896.	8.9	44
50	Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies. FASEB Journal, 2008, 22, 2591-2599.	0.5	229
51	Parasitic inhibition of cell death facilitates symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 213-215.	7.1	162
52	Interaction between host genotype and environmental conditions affects bacterial density in Wolbachia symbiosis. Biology Letters, 2007, 3, 210-213.	2.3	107
53	Evolution and invasion dynamics of multiple infections with Wolbachia investigated using matrix based models. Journal of Theoretical Biology, 2007, 245, 197-209.	1.7	22
54	Effect of temperature on Wolbachiadensity and impact on cytoplasmic incompatibility. Parasitology, 2006, 132, 49-56.	1.5	105

#	Article	IF	CITATIONS
55	A Survey of the Bacteriophage WO in the Endosymbiotic Bacteria Wolbachia. Molecular Biology and Evolution, 2006, 24, 427-435.	8.9	89
56	Multiple infections and diversity of cytoplasmic incompatibility in a haplodiploid species. Heredity, 2005, 94, 187-192.	2.6	37
57	Wolbachia requirement for oogenesis: occurrence within the genus Asobara (Hymenoptera,) Tj ETQq $1\ 1\ 0.7843$	14 rgBT /C 2:6	Verlock 10 T
58	Efficient Procedure for Purification of ObligateIntracellular Wolbachia pipientis and RepresentativeAmplification of Its Genome by Multiple-DisplacementAmplification. Applied and Environmental Microbiology, 2005, 71, 6910-6917.	3.1	20
59	INTRA-INDIVIDUAL COEXISTENCE OF A WOLBACHIA STRAIN REQUIRED FOR HOST OOGENESIS WITH TWO STRAINS INDUCING CYTOPLASMIC INCOMPATIBILITY IN THE WASP ASOBARA TABIDA. Evolution; International Journal of Organic Evolution, 2004, 58, 2167.	2.3	1
60	Virulence, Multiple Infections and Regulation of Symbiotic Population in the Wolbachia-Asobara tabida Symbiosis. Genetics, 2004, 168, 181-189.	2.9	116
61	Diversity, distribution and specificity of WO phage infection in Wolbachia of four insect species. Insect Molecular Biology, 2004, 13, 147-153.	2.0	56
62	INTRA-INDIVIDUAL COEXISTENCE OF A WOLBACHIA STRAIN REQUIRED FOR HOST OOGENESIS WITH TWO STRAINS INDUCING CYTOPLASMIC INCOMPATIBILITY IN THE WASP ASOBARA TABIDA. Evolution; International Journal of Organic Evolution, 2004, 58, 2167-2174.	2.3	47
63	Cytogenetic mechanism and genetic consequences of thelytoky in the wasp Trichogramma cacoeciae. Heredity, 2004, 93, 592-596.	2.6	52
64	Strainâ€specific regulation of intracellular Wolbachia density in multiply infected insects. Molecular Ecology, 2003, 12, 3459-3465.	3.9	92
65	BETWEEN- AND WITHIN-HOST SPECIES SELECTION ON CYTOPLASMIC INCOMPATIBILITY-INDUCING WOLBACHIA IN HAPLODIPLOIDS. Evolution; International Journal of Organic Evolution, 2003, 57, 421-427.	2.3	29
66	BETWEEN- AND WITHIN-HOST SPECIES SELECTION ON CYTOPLASMIC INCOMPATIBILITY–INDUCING WOLBACHIA IN HAPLODIPLOIDS. Evolution; International Journal of Organic Evolution, 2003, 57, 421.	2.3	20
67	Phylogeny of six African <i>Leptopilina</i> species (Hymenoptera: Cynipoidea, Figitidae), parasitoids of <i>Drosophila</i> , with description of three new species. Annales De La Societe Entomologique De France, 2002, 38, 319-332.	0.9	66
68	Infection polymorphism and cytoplasmic incompatibility in Hymenoptera-Wolbachia associations. Heredity, 2002, 88, 361-365.	2.6	43
69	Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6247-6252.	7.1	410
70	WITHIN-SPECIES DIVERSITY OF WOLBACHIA-INDUCED CYTOPLASMIC INCOMPATIBILITY IN HAPLODIPLOID INSECTS. Evolution; International Journal of Organic Evolution, 2001, 55, 1710-1714.	2.3	46
71	WITHIN-SPECIES DIVERSITY OF WOLBACHIA-INDUCED CYTOPLASMIC INCOMPATIBILITY IN HAPLODIPLOID INSECTS. Evolution; International Journal of Organic Evolution, 2001, 55, 1710.	2.3	4
72	Physiological cost induced by the maternally-transmitted endosymbiont Wolbachia in the Drosophila parasitoid Leptopilina heterotoma. Parasitology, 2000, 121, 493-500.	1.5	129

#	Article	lF	CITATION
73	EVIDENCE FOR FEMALE MORTALITY INWOLBACHIA-MEDIATED CYTOPLASMIC INCOMPATIBILITY IN HAPLODIPLOID INSECTS: EPIDEMIOLOGIC AND EVOLUTIONARY CONSEQUENCES. Evolution; International Journal of Organic Evolution, 2000, 54, 191-200.	2.3	57
74	EVIDENCE FOR FEMALE MORTALITY IN WOLBACHIA-MEDIATED CYTOPLASMIC INCOMPATIBILITY IN HAPLODIPLOID INSECTS: EPIDEMIOLOGIC AND EVOLUTIONARY CONSEQUENCES. Evolution; International Journal of Organic Evolution, 2000, 54, 191.	2.3	96
75	Phylogenetic evidence for horizontal transmission of Wolbachia in host- parasitoid associations. Molecular Biology and Evolution, 1999, 16, 1711-1723.	8.9	363
76	Phylogenetic status of a fecundityâ€enhancing <i>Wolbachia</i> that does not induce thelytoky in <i>Trichogramma</i> . Insect Molecular Biology, 1999, 8, 67-72.	2.0	94
77	Wolbachia load variation in Drosophila is more likely caused by drift than by host genetic factors. , 0, 1 , .		1
78	Analyses of symbiotic bacterial communities in the plant pest Bemisia tabaci reveal high prevalence of Candidatus Hemipteriphilus asiaticus on the African continent. , 0, 2, .		4