
Fabrice Vavre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7616737/publications.pdf Version: 2024-02-01

FARDICE VAUDE

#	Article	IF	CITATIONS
1	Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proceedings of the United States of America, 2001, 98, 6247-6252.	7.1	410
2	Phylogenetic evidence for horizontal transmission of Wolbachia in host- parasitoid associations. Molecular Biology and Evolution, 1999, 16, 1711-1723.	8.9	363
3	Bacterial symbionts in insects or the story of communities affecting communities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 1389-1400.	4.0	285
4	The Transmission Efficiency of <i>Tomato Yellow Leaf Curl Virus</i> by the Whitefly <i>Bemisia tabaci</i> Is Correlated with the Presence of a Specific Symbiotic Bacterium Species. Journal of Virology, 2010, 84, 9310-9317.	3.4	277
5	Tick-Bacteria Mutualism Depends on B Vitamin Synthesis Pathways. Current Biology, 2018, 28, 1896-1902.e5.	3.9	246
6	Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies. FASEB Journal, 2008, 22, 2591-2599.	0.5	229
7	The Recent Evolution of a Maternally-Inherited Endosymbiont of Ticks Led to the Emergence of the Q Fever Pathogen, Coxiella burnetii. PLoS Pathogens, 2015, 11, e1004892.	4.7	218
8	Endosymbiont metacommunities, mtDNA diversity and the evolution of the Bemisia tabaci (Hemiptera:) Tj ETQq(0 0 0 0 rgBT	Overlock 10
9	Evolutionary changes in symbiont community structure in ticks. Molecular Ecology, 2017, 26, 2905-2921.	3.9	187

10	Wolbachia Interferes with Ferritin Expression and Iron Metabolism in Insects. PLoS Pathogens, 2009, 5, e1000630.	4.7	164
11	Parasitic inhibition of cell death facilitates symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 213-215.	7.1	162
12	Physiological cost induced by the maternally-transmitted endosymbiont Wolbachia in the Drosophila parasitoid Leptopilina heterotoma. Parasitology, 2000, 121, 493-500.	1.5	129
13	Spodoptera frugiperda (Lepidoptera: Noctuidae) host-plant variants: two host strains or two distinct species?. Genetica, 2015, 143, 305-316.	1.1	117
14	Virulence, Multiple Infections and Regulation of Symbiotic Population in the Wolbachia-Asobara tabida Symbiosis. Genetics, 2004, 168, 181-189.	2.9	116
15	Interaction between host genotype and environmental conditions affects bacterial density in Wolbachia symbiosis. Biology Letters, 2007, 3, 210-213.	2.3	107
16	Effect of temperature onWolbachiadensity and impact on cytoplasmic incompatibility. Parasitology, 2006, 132, 49-56.	1.5	105
17	Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci. BMC Genomics, 2015, 16, 226.	2.8	100
18	EVIDENCE FOR FEMALE MORTALITY IN WOLBACHIA-MEDIATED CYTOPLASMIC INCOMPATIBILITY IN HAPLODIPLOID INSECTS: EPIDEMIOLOGIC AND EVOLUTIONARY CONSEQUENCES. Evolution; International	2.3	96

HAPLODIPLOID INSECTS: EPIDEMIOLOGIC AND EVOLUTIONARY COI Journal of Organic Evolution, 2000, 54, 191.

#	Article	IF	CITATIONS
19	Phylogenetic status of a fecundityâ€enhancing <i>Wolbachia</i> that does not induce thelytoky in <i>Trichogramma</i> . Insect Molecular Biology, 1999, 8, 67-72.	2.0	94
20	Strainâ€ s pecific regulation of intracellular Wolbachia density in multiply infected insects. Molecular Ecology, 2003, 12, 3459-3465.	3.9	92
21	Interactions between vertically transmitted symbionts: cooperation or conflict?. Trends in Microbiology, 2009, 17, 95-99.	7.7	90
22	A Survey of the Bacteriophage WO in the Endosymbiotic Bacteria Wolbachia. Molecular Biology and Evolution, 2006, 24, 427-435.	8.9	89
23	Parasite–Parasite Interactions in the Wild: How To Detect Them?. Trends in Parasitology, 2015, 31, 640-652.	3.3	88
24	Immunity and symbiosis. Molecular Microbiology, 2009, 73, 751-759.	2.5	80
25	Complete Genome Sequence of "Candidatus Portiera aleyrodidarum―BT-QVLC, an Obligate Symbiont That Supplies Amino Acids and Carotenoids to Bemisia tabaci. Journal of Bacteriology, 2012, 194, 6654-6655.	2.2	80
26	Wolbachia requirement for oogenesis: occurrence within the genus Asobara (Hymenoptera,) Tj ETQq0 0 0 rgBT	/Overlock 2.6	10 Jf 50 462
27	A new case of Wolbachia dependence in the genus Asobara: evidence for parthenogenesis induction in Asobara japonica. Heredity, 2009, 103, 248-256.	2.6	73
28	The Genome of Cardinium cBtQ1 Provides Insights into Genome Reduction, Symbiont Motility, and Its Settlement in Bemisia tabaci. Genome Biology and Evolution, 2014, 6, 1013-1030.	2.5	68
29	Phylogeny of six African <i>Leptopilina</i> species (Hymenoptera: Cynipoidea, Figitidae), parasitoids of <i>Drosophila</i> , with description of three new species. Annales De La Societe Entomologique De France, 2002, 38, 319-332.	0.9	66
30	Distribution of <i>Bemisia tabaci</i> (Homoptera: Aleyrodidae) biotypes and their associated symbiotic bacteria on host plants in West Africa. Insect Conservation and Diversity, 2013, 6, 411-421.	3.0	66
31	SNP calling from RNA-seq data without a reference genome: identification, quantification, differential analysis and impact on the protein sequence. Nucleic Acids Research, 2016, 44, gkw655.	14.5	66
32	Influence of Wolbachia on host gene expression in an obligatory symbiosis. BMC Microbiology, 2012, 12, S7.	3.3	63
33	Intraspecific specialization of the generalist parasitoid <i>Cotesia sesamiae</i> revealed by polyDNAvirus polymorphism and associated with different <i>Wolbachia</i> infection. Molecular Ecology, 2011, 20, 959-971.	3.9	61
34	EVIDENCE FOR FEMALE MORTALITY INWOLBACHIA-MEDIATED CYTOPLASMIC INCOMPATIBILITY IN HAPLODIPLOID INSECTS: EPIDEMIOLOGIC AND EVOLUTIONARY CONSEQUENCES. Evolution; International Journal of Organic Evolution, 2000, 54, 191-200.	2.3	57
35	Diversity, distribution and specificity of WO phage infection in Wolbachia of four insect species. Insect Molecular Biology, 2004, 13, 147-153.	2.0	56
36	Cytogenetic mechanism and genetic consequences of thelytoky in the wasp Trichogramma cacoeciae. Heredity, 2004, 93, 592-596.	2.6	52

#	Article	IF	CITATIONS
37	INTRA-INDIVIDUAL COEXISTENCE OF A WOLBACHIA STRAIN REQUIRED FOR HOST OOGENESIS WITH TWO STRAINS INDUCING CYTOPLASMIC INCOMPATIBILITY IN THE WASP ASOBARA TABIDA. Evolution; International Journal of Organic Evolution, 2004, 58, 2167-2174.	2.3	47
38	WITHIN-SPECIES DIVERSITY OF WOLBACHIA-INDUCED CYTOPLASMIC INCOMPATIBILITY IN HAPLODIPLOID INSECTS. Evolution; International Journal of Organic Evolution, 2001, 55, 1710-1714.	2.3	46
39	Intense Transpositional Activity of Insertion Sequences in an Ancient Obligate Endosymbiont. Molecular Biology and Evolution, 2008, 25, 1889-1896.	8.9	44
40	Intragenomic conflict in populations infected by Parthenogenesis Inducing Wolbachia ends with irreversible loss of sexual reproduction. BMC Evolutionary Biology, 2010, 10, 229.	3.2	44
41	Manipulation of Arthropod Sex Determination by Endosymbionts: Diversity and Molecular Mechanisms. Sexual Development, 2014, 8, 59-73.	2.0	44
42	Infection polymorphism and cytoplasmic incompatibility in Hymenoptera-Wolbachia associations. Heredity, 2002, 88, 361-365.	2.6	43
43	Making (good) use of Wolbachia: what the models say. Current Opinion in Microbiology, 2012, 15, 263-268.	5.1	41
44	Influence of Microbial Symbionts on Plant–Insect Interactions. Advances in Botanical Research, 2017, , 225-257.	1.1	40
45	Microbial impacts on insect evolutionary diversification: from patterns to mechanisms. Current Opinion in Insect Science, 2014, 4, 29-34.	4.4	39
46	Multiple infections and diversity of cytoplasmic incompatibility in a haplodiploid species. Heredity, 2005, 94, 187-192.	2.6	37
47	Back and forth <i>Wolbachia</i> transfers reveal efficient strains to control spotted wing drosophila populations. Journal of Applied Ecology, 2018, 55, 2408-2418.	4.0	33
48	BETWEEN- AND WITHIN-HOST SPECIES SELECTION ON CYTOPLASMIC INCOMPATIBILITY-INDUCING WOLBACHIA IN HAPLODIPLOIDS. Evolution; International Journal of Organic Evolution, 2003, 57, 421-427.	2.3	29
49	Do vertically transmitted symbionts coâ€existing in a single host compete or cooperate? A modelling approach. Journal of Evolutionary Biology, 2008, 21, 145-161.	1.7	29
50	Epidemiology of asexuality induced by the endosymbiotic <i>Wolbachia</i> across phytophagous wasp species: host plant specialization matters. Molecular Ecology, 2014, 23, 2362-2375.	3.9	29
51	Influence of the Virus LbFV and of Wolbachia in a Host-Parasitoid Interaction. PLoS ONE, 2012, 7, e35081.	2.5	26
52	Distribution of Endosymbiotic Reproductive Manipulators Reflects Invasion Process and Not Reproductive System Polymorphism in the Little Fire Ant Wasmannia auropunctata. PLoS ONE, 2013, 8, e58467.	2.5	26
53	Two Host Clades, Two Bacterial Arsenals: Evolution through Gene Losses in Facultative Endosymbionts. Genome Biology and Evolution, 2015, 7, 839-855.	2.5	26
54	The Importance of Revisiting Legionellales Diversity. Trends in Parasitology, 2018, 34, 1027-1037.	3.3	26

#	Article	IF	CITATIONS
55	Evolution and invasion dynamics of multiple infections with Wolbachia investigated using matrix based models. Journal of Theoretical Biology, 2007, 245, 197-209.	1.7	22
56	BETWEEN- AND WITHIN-HOST SPECIES SELECTION ON CYTOPLASMIC INCOMPATIBILITY–INDUCING WOLBACHIA IN HAPLODIPLOIDS. Evolution; International Journal of Organic Evolution, 2003, 57, 421.	2.3	20
57	Efficient Procedure for Purification of ObligateIntracellular Wolbachia pipientis and RepresentativeAmplification of Its Genome by Multiple-DisplacementAmplification. Applied and Environmental Microbiology, 2005, 71, 6910-6917.	3.1	20
58	Endosymbiont diversity among sibling weevil species competing for the same resource. BMC Evolutionary Biology, 2013, 13, 28.	3.2	20
59	Maintenance of adaptive differentiation by Wolbachia induced bidirectional cytoplasmic incompatibility: the importance of sib-mating and genetic systems. BMC Evolutionary Biology, 2009, 9, 185.	3.2	19
60	Biotype status and resistance to neonicotinoids and carbosulfan in <i>Bemisia tabaci</i> (Hemiptera:) Tj ETQqO	0 0 ₁₅₈ 8T /C	Overlock 10 Ti
61	DO VARIABLE COMPENSATORY MECHANISMS EXPLAIN THE POLYMORPHISM OF THE DEPENDENCE PHENOTYPE IN THE ASOBARA TABIDA-WOLBACHIA ASSOCIATION?. Evolution; International Journal of Organic Evolution, 2010, 64, no-no.	2.3	17
62	Abundance of <i>Bemisia tabaci</i> Gennadius (Hemiptera: Aleyrodidae) and its parasitoids on vegetables and cassava plants in Burkina Faso (West Africa). Ecology and Evolution, 2018, 8, 6091-6103.	1.9	17
63	Detection of genetically isolated entities within the Mediterranean species of <i>Bemisia tabaci</i> : new insights into the systematics of this worldwide pest. Pest Management Science, 2015, 71, 452-458.	3.4	16
64	Does a parthenogenesis-inducing Wolbachia induce vestigial cytoplasmic incompatibility?. Die Naturwissenschaften, 2011, 98, 175-180.	1.6	15
65	Cancer Is Not (Only) a Senescence Problem. Trends in Cancer, 2018, 4, 169-172.	7.4	15
66	Chapter 12 Drosophila–Parasitoid Communities as Model Systems for Host–Wolbachia Interactions. Advances in Parasitology, 2009, 70, 299-331.	3.2	14
67	Influence of oxidative homeostasis on bacterial density and cost of infection in <i>Drosophila</i> – <i>Wolbachia</i> symbioses. Journal of Evolutionary Biology, 2016, 29, 1211-1222.	1.7	14
68	Endosymbiont diversity in natural populations of Tetranychus mites is rapidly lost under laboratory conditions. Heredity, 2020, 124, 603-617.	2.6	12
69	Signs of Neutralization in a Redundant Gene Involved in Homologous Recombination in Wolbachia Endosymbionts. Genome Biology and Evolution, 2014, 6, 2654-2664.	2.5	10
70	Impact of pest management practices on the frequency of insecticide resistance alleles in Bemisia tabaci (Hemiptera: Aleyrodidae) populations in three countries of West Africa. Crop Protection, 2018, 104, 86-91.	2.1	10
71	Molecular detection and identification of Rickettsia endosymbiont in different biotypes of Bemisia tabaci. Clinical Microbiology and Infection, 2009, 15, 271-272.	6.0	5
72	WITHIN-SPECIES DIVERSITY OF WOLBACHIA-INDUCED CYTOPLASMIC INCOMPATIBILITY IN HAPLODIPLOID INSECTS. Evolution; International Journal of Organic Evolution, 2001, 55, 1710.	2.3	4

#	Article	IF	CITATIONS
73	Analyses of symbiotic bacterial communities in the plant pest Bemisia tabaci reveal high prevalence of Candidatus Hemipteriphilus asiaticus on the African continent. , 0, 2, .		4
74	Impact of Wolbachia on oxidative stress sensitivity in the parasitic wasp Asobara japonica. PLoS ONE, 2017, 12, e0175974.	2.5	3
75	Cytotype Affects the Capability of the Whitefly Bemisia tabaci MED Species To Feed and Oviposit on an Unfavorable Host Plant. MBio, 2021, 12, e0073021.	4.1	3
76	INTRA-INDIVIDUAL COEXISTENCE OF A WOLBACHIA STRAIN REQUIRED FOR HOST OOGENESIS WITH TWO STRAINS INDUCING CYTOPLASMIC INCOMPATIBILITY IN THE WASP ASOBARA TABIDA. Evolution; International Journal of Organic Evolution, 2004, 58, 2167.	2.3	1
77	Wolbachia load variation in Drosophila is more likely caused by drift than by host genetic factors. , 0, 1, .		1
78	Obligate dependence does not preclude changing partners in a Russian dolls symbiotic system. Peer Community in Evolutionary Biology, 2018, , .	0.0	0