Nhan L Tran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7616591/publications.pdf

Version: 2024-02-01

58 3,555
papers citations

3,555 27 citations h-index

58 58 all docs docs citations

58 times ranked 5992 citing authors

50

g-index

189892

#	Article	IF	CITATIONS
1	Nanocell-mediated delivery of miR-34a counteracts temozolomide resistance in glioblastoma. Molecular Medicine, 2021, 27, 28.	4.4	8
2	Elevated fibroblast growth factorâ€inducible 14 expression transforms proneuralâ€ike gliomas into more aggressive and lethal brain cancer. Glia, 2021, 69, 2199-2214.	4.9	7
3	Leukemia-Associated Rho Guanine Nucleotide Exchange Factor and Ras Homolog Family Member C Play a Role in Glioblastoma Cell Invasion and Resistance. American Journal of Pathology, 2020, 190, 2165-2176.	3.8	6
4	Targeting the RhoGEF Î ² PIX/COOL-1 in Glioblastoma: Proof of Concept Studies. Cancers, 2020, 12, 3531.	3.7	4
5	Low-Dose Vertical Inhibition of the RAF-MEK-ERK Cascade Causes Apoptotic Death of KRAS Mutant Cancers. Cell Reports, 2020, 31, 107764.	6.4	69
6	Temporospatial genomic profiling in glioblastoma identifies commonly altered core pathways underlying tumor progression. Neuro-Oncology Advances, 2020, 2, vdaa078.	0.7	12
7	TROY signals through JAK1-STAT3 to promote glioblastoma cell migration and resistance. Neoplasia, 2020, 22, 352-364.	5.3	13
8	Decreased nonspecific adhesivity, receptor-targeted therapeutic nanoparticles for primary and metastatic breast cancer. Science Advances, 2020, 6, eaax3931.	10.3	50
9	Inhibition of phosphatidylinositol 3-kinase by PX-866 suppresses temozolomide-induced autophagy and promotes apoptosis in glioblastoma cells. Molecular Medicine, 2019, 25, 49.	4.4	27
10	Accurate Patient-Specific Machine Learning Models of Glioblastoma Invasion Using Transfer Learning. American Journal of Neuroradiology, 2019, 40, 418-425.	2.4	19
11	Differential expression of the TWEAK receptor Fn14 in IDH1 wild-type and mutant gliomas. Journal of Neuro-Oncology, 2018, 138, 241-250.	2.9	9
12	Prospective Feasibility Trial for Genomics-Informed Treatment in Recurrent and Progressive Glioblastoma. Clinical Cancer Research, 2018, 24, 295-305.	7.0	68
13	A Novel Signaling Complex between TROY and EGFR Mediates Glioblastoma Cell Invasion. Molecular Cancer Research, 2018, 16, 322-332.	3.4	12
14	NIMG-12. RADIOGENOMICS ON VENUS AND MARS: IMPACT OF SEX-DIFFERENCES ON MRI AND GENETIC CORRELATIONS IN GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi178-vi178.	1.2	0
15	RDNA-06. A NOVEL ROLE OF SGEF IN MEDIATING GBM CELL SURVIVAL BY MODULATING THE DNA DAMAGE REPAIR MECHANISM. Neuro-Oncology, 2018, 20, vi222-vi223.	1.2	0
16	DDIS-25. TARGETING GLIOBLASTOMA HETEROGENEITY WITH miR-34a. Neuro-Oncology, 2018, 20, vi74-vi74.	1.2	0
17	DRES-20. THE TNF RECEPTOR FAMILY MEMBER Fn14 IS HIGHLY EXPRESSED IN RECURRENT GLIOBLASTOMA (GBM) AND IN GBM PATIENT-DERIVED XENOGRAFTS WITH ACQUIRED TEMOZOLOMIDE RESISTANCE. Neuro-Oncology, 2018, 20, vi79-vi80.	1.2	0
18	TMOD-18. THE PATIENT DERIVED XENOGRAFT NATIONAL RESOURCE: A COMPREHENSIVE COLLECTION OF HIGH-GRADE GLIOMA MODELS FOR PRE-CLINICAL AND TRANSLATIONAL STUDIES. Neuro-Oncology, 2018, 20, vi272-vi272.	1.2	0

#	Article	IF	Citations
19	CSIG-05. PI3K INHIBITORS PX-866 AND BEZ235 DIFFERENTIALLY MODULATE AUTOPHAGY IN GBM. Neuro-Oncology, 2018, 20, vi43-vi44.	1.2	0
20	Developments in Blood-Brain Barrier Penetrance and Drug Repurposing for Improved Treatment of Glioblastoma. Frontiers in Oncology, 2018, 8, 462.	2.8	108
21	ANGI-02. A CRITICAL ROLE FOR LARG IN RhoC MEDIATED GLIOBLASTOMA CELL INVASION. Neuro-Oncology, 2018, 20, vi28-vi28.	1.2	0
22	PDZ-RhoGEF Is a Signaling Effector for TROY-Induced Glioblastoma Cell Invasion and Survival. Neoplasia, 2018, 20, 1045-1058.	5.3	15
23	EGFRvIII–Stat5 Signaling Enhances Glioblastoma Cell Migration and Survival. Molecular Cancer Research, 2018, 16, 1185-1195.	3.4	37
24	The TNF receptor family member Fn14 is highly expressed in recurrent glioblastoma and in GBM patient-derived xenografts with acquired temozolomide resistance. Neuro-Oncology, 2018, 20, 1321-1330.	1.2	28
25	Integrated genomic analysis of survival outliers in glioblastoma. Neuro-Oncology, 2017, 19, now269.	1.2	23
26	RNA sequencing and transcriptome arrays analyses show opposing results for alternative splicing in patient derived samples. BMC Genomics, 2017, 18, 443.	2.8	74
27	Tumorâ€targeted nanotherapeutics: overcoming treatment barriers for glioblastoma. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1439.	6.1	57
28	Molecular and Microenvironmental Determinants of Glioma Stem-Like Cell Survival and Invasion. Frontiers in Oncology, 2017, 7, 120.	2.8	83
29	Identification of aurintricarboxylic acid as a selective inhibitor of the TWEAK-Fn14 signaling pathway in glioblastoma cells. Oncotarget, 2017, 8, 12234-12246.	1.8	30
30	SGEF Is Regulated via TWEAK/Fn14/NF-κB Signaling and Promotes Survival by Modulation of the DNA Repair Response to Temozolomide. Molecular Cancer Research, 2016, 14, 302-312.	3.4	17
31	Propentofylline inhibits glioblastoma cell invasion and survival by targeting the TROY signaling pathway. Journal of Neuro-Oncology, 2016, 126, 397-404.	2.9	10
32	The TWEAK Receptor Fn14 Is an Src-Inducible Protein and a Positive Regulator of Src-Driven Cell Invasion. Molecular Cancer Research, 2015, 13, 575-583.	3.4	20
33	Toward precision medicine in glioblastoma: the promise and the challenges. Neuro-Oncology, 2015, 17, 1051-1063.	1.2	178
34	Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma. PLoS ONE, 2015, 10, e0141506.	2.5	104
35	Development of Human Serine Protease-Based Therapeutics Targeting Fn14 and Identification of Fn14 as a New Target Overexpressed in TNBC. Molecular Cancer Therapeutics, 2014, 13, 2688-2705.	4.1	24
36	Current approaches to the treatment of metastatic brain tumours. Nature Reviews Clinical Oncology, 2014, 11, 203-222.	27.6	233

#	Article	IF	CITATIONS
37	LKB1 inactivation sensitizes non-small cell lung cancer to pharmacological aggravation of ER stress. Cancer Letters, 2014, 352, 187-195.	7.2	18
38	Integrated Genomic and Epigenomic Analysis of Breast Cancer Brain Metastasis. PLoS ONE, 2014, 9, e85448.	2.5	95
39	Implications of Rho GTPase Signaling in Glioma Cell Invasion and Tumor Progression. Frontiers in Oncology, 2013, 3, 241.	2.8	89
40	TROY (TNFRSF19) Promotes Glioblastoma Survival Signaling and Therapeutic Resistance. Molecular Cancer Research, 2013, 11, 865-874.	3.4	46
41	The Src Homology 3 Domain-containing Guanine Nucleotide Exchange Factor Is Overexpressed in High-grade Gliomas and Promotes Tumor Necrosis Factor-like Weak Inducer of Apoptosis-Fibroblast Growth Factor-inducible 14-induced Cell Migration and Invasion via Tumor Necrosis Factor Receptor-associated Factor 2, Journal of Biological Chemistry, 2013, 288, 21887-21897.	3.4	26
42	Reciprocal Activation of Transcription Factors Underlies the Dichotomy between Proliferation and Invasion of Glioma Cells. PLoS ONE, 2013, 8, e72134.	2.5	47
43	Molecular determinants of lung cancer metastasis to the central nervous system. Translational Lung Cancer Research, 2013, 2, 273-83.	2.8	15
44	The use of quantitative proteomics towards biomarker discovery in lung squamous cell carcinoma. Translational Lung Cancer Research, 2013, 2, 457-60.	2.8	1
45	New insights into the functional consequences of ephrin A3 mutations in non-small cell lung cancer. Translational Lung Cancer Research, 2013, 2, 3-5.	2.8	18
46	TROY (TNFRSF19) Is Overexpressed in Advanced Glial Tumors and Promotes Glioblastoma Cell Invasion via Pyk2-Rac1 Signaling. Molecular Cancer Research, 2010, 8, 1558-1567.	3.4	60
47	Tumor Necrosis Factor–Like Weak Inducer of Apoptosis Stimulation of Glioma Cell Survival Is Dependent on Akt2 Function. Molecular Cancer Research, 2009, 7, 1871-1881.	3.4	54
48	The Pyk2 FERM domain as a target to inhibit glioma migration. Molecular Cancer Therapeutics, 2009, 8, 1505-1514.	4.1	27
49	The Guanine Nucleotide Exchange Factors Trio, Ect2, and Vav3 Mediate the Invasive Behavior of Glioblastoma. American Journal of Pathology, 2008, 173, 1828-1838.	3.8	154
50	Increased Fibroblast Growth Factor-Inducible 14 Expression Levels Promote Glioma Cell Invasion via Rac1 and Nuclear Factor-κB and Correlate with Poor Patient Outcome. Cancer Research, 2006, 66, 9535-9542.	0.9	172
51	The Tumor Necrosis Factor-like Weak Inducer of Apoptosis (TWEAK)-Fibroblast Growth Factor-inducible 14 (Fn14) Signaling System Regulates Glioma Cell Survival via NFήB Pathway Activation and BCL-XL/BCL-W Expression. Journal of Biological Chemistry, 2005, 280, 3483-3492.	3.4	166
52	The Tyrosine Kinase Pyk2 Promotes Migration and Invasion of Glioma Cells. Neoplasia, 2005, 7, 435-445.	5.3	120
53	Regulation of Glioma Cell Migration by Seri ne-Phosphorylated P3111. Neoplasia, 2005, 7, 862-872.	5. 3	61
54	Cell migration and invasion assays. Methods, 2005, 37, 208-215.	3.8	266

#	Article	IF	CITATIONS
55	Role of Synaptojanin 2 in Glioma Cell Migration and Invasion. Cancer Research, 2004, 64, 8271-8275.	0.9	150
56	The Human Fn14 Receptor Gene Is Up-Regulated in Migrating Glioma Cells in Vitro and Overexpressed in Advanced Glial Tumors. American Journal of Pathology, 2003, 162, 1313-1321.	3.8	126
57	Migrating glioma cells activate the PI3-K pathway and display decreased susceptibility to apoptosis. Journal of Cell Science, 2003, 116, 4409-4417.	2.0	153
58	Dichotomy of astrocytoma migration and proliferation. , 1996, 67, 275-282.		346