List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7615920/publications.pdf Version: 2024-02-01

HONCOL SUN

#	Article	IF	CITATIONS
1	Metal-Free Carbocatalysis in Advanced Oxidation Reactions. Accounts of Chemical Research, 2018, 51, 678-687.	15.6	968
2	N-Doping-Induced Nonradical Reaction on Single-Walled Carbon Nanotubes for Catalytic Phenol Oxidation. ACS Catalysis, 2015, 5, 553-559.	11.2	772
3	Nonradical reactions in environmental remediation processes: Uncertainty and challenges. Applied Catalysis B: Environmental, 2018, 224, 973-982.	20.2	694
4	Nitrogen-Doped Graphene for Generation and Evolution of Reactive Radicals by Metal-Free Catalysis. ACS Applied Materials & Interfaces, 2015, 7, 4169-4178.	8.0	677
5	Insights into Heterogeneous Catalysis of Persulfate Activation on Dimensional-Structured Nanocarbons. ACS Catalysis, 2015, 5, 4629-4636.	11.2	642
6	Reduced Graphene Oxide for Catalytic Oxidation of Aqueous Organic Pollutants. ACS Applied Materials & Interfaces, 2012, 4, 5466-5471.	8.0	636
7	Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chemical Engineering Journal, 2013, 226, 336-347.	12.7	598
8	Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation. Applied Catalysis B: Environmental, 2016, 188, 98-105.	20.2	570
9	Sulfur and Nitrogen Co-Doped Graphene for Metal-Free Catalytic Oxidation Reactions. Small, 2015, 11, 3036-3044.	10.0	567
10	Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. Chemical Engineering Journal, 2012, 184, 326-332.	12.7	549
11	A review on photocatalysis for air treatment: From catalyst development to reactor design. Chemical Engineering Journal, 2017, 310, 537-559.	12.7	449
12	Different Crystallographic One-dimensional MnO ₂ Nanomaterials and Their Superior Performance in Catalytic Phenol Degradation. Environmental Science & Technology, 2013, 47, 5882-5887.	10.0	446
13	Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals. Applied Catalysis B: Environmental, 2014, 154-155, 134-141.	20.2	437
14	Manganese oxides at different oxidation states for heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions. Applied Catalysis B: Environmental, 2013, 142-143, 729-735.	20.2	435
15	Insights into perovskite-catalyzed peroxymonosulfate activation: Maneuverable cobalt sites for promoted evolution of sulfate radicals. Applied Catalysis B: Environmental, 2018, 220, 626-634.	20.2	428
16	Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds. Applied Catalysis B: Environmental, 2016, 194, 7-15.	20.2	390
17	Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution. Applied Catalysis B: Environmental, 2010, 100, 529-534.	20.2	373
18	An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate. Environmental Science: Nano, 2017, 4, 315-324.	4.3	372

#	Article	IF	CITATIONS
19	Unveiling the active sites of graphene-catalyzed peroxymonosulfate activation. Carbon, 2016, 107, 371-378.	10.3	359
20	Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: a historic review. Catalysis Science and Technology, 2016, 6, 7002-7023.	4.1	350
21	3D-hierarchically structured MnO2 for catalytic oxidation of phenol solutions by activation of peroxymonosulfate: Structure dependence and mechanism. Applied Catalysis B: Environmental, 2015, 164, 159-167.	20.2	345
22	Facile synthesis of nitrogen-doped graphene via low-temperature pyrolysis: The effects of precursors and annealing ambience on metal-free catalytic oxidation. Carbon, 2017, 115, 649-658.	10.3	323
23	Porous Carbons: Structureâ€Oriented Design and Versatile Applications. Advanced Functional Materials, 2020, 30, 1909265.	14.9	316
24	Facile assembly of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water oxidation and pollutant degradation. Applied Catalysis B: Environmental, 2017, 200, 47-55.	20.2	314
25	Degradation of Cosmetic Microplastics via Functionalized Carbon Nanosprings. Matter, 2019, 1, 745-758.	10.0	306
26	0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution. Applied Catalysis B: Environmental, 2018, 228, 64-74.	20.2	298
27	Facile synthesis of nitrogen doped reduced graphene oxide as a superior metal-free catalyst for oxidation. Chemical Communications, 2013, 49, 9914.	4.1	294
28	Nanocarbons in different structural dimensions (0–3D) for phenol adsorption and metal-free catalytic oxidation. Applied Catalysis B: Environmental, 2015, 179, 352-362.	20.2	277
29	Rational Catalyst Design for N ₂ Reduction under Ambient Conditions: Strategies toward Enhanced Conversion Efficiency. ACS Catalysis, 2020, 10, 6870-6899.	11.2	273
30	Activation of peroxymonosulfate by carbonaceous oxygen groups: experimental and density functional theory calculations. Applied Catalysis B: Environmental, 2016, 198, 295-302.	20.2	261
31	Insights into N-doping in single-walled carbon nanotubes for enhanced activation of superoxides: a mechanistic study. Chemical Communications, 2015, 51, 15249-15252.	4.1	259
32	Topotactic Transformation of Metal–Organic Frameworks to Graphene-Encapsulated Transition-Metal Nitrides as Efficient Fenton-like Catalysts. ACS Nano, 2016, 10, 11532-11540.	14.6	253
33	A new magnetic nano zero-valent iron encapsulated in carbon spheres for oxidative degradation of phenol. Applied Catalysis B: Environmental, 2015, 172-173, 73-81.	20.2	244
34	Excellent performance of mesoporous Co3O4/MnO2 nanoparticles in heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions. Applied Catalysis B: Environmental, 2012, 127, 330-335.	20.2	243
35	N-Doped Graphene from Metal–Organic Frameworks for Catalytic Oxidation of p-Hydroxylbenzoic Acid: N-Functionality and Mechanism. ACS Sustainable Chemistry and Engineering, 2017, 5, 2693-2701.	6.7	243
36	Efficient Catalytic Ozonation over Reduced Graphene Oxide for <i>p</i> -Hydroxylbenzoic Acid (PHBA) Destruction: Active Site and Mechanism. ACS Applied Materials & Interfaces, 2016, 8, 9710-9720.	8.0	234

#	Article	IF	CITATIONS
37	Hydrothermal Synthesis of Co ₃ O ₄ –Graphene for Heterogeneous Activation of Peroxymonosulfate for Decomposition of Phenol. Industrial & Engineering Chemistry Research, 2012, 51, 14958-14965.	3.7	231
38	New insights into heterogeneous generation and evolution processes of sulfate radicals for phenol degradation over one-dimensional I±-MnO2 nanostructures. Chemical Engineering Journal, 2015, 266, 12-20.	12.7	229
39	Nitrogen- and Sulfur-Codoped Hierarchically Porous Carbon for Adsorptive and Oxidative Removal of Pharmaceutical Contaminants. ACS Applied Materials & Interfaces, 2016, 8, 7184-7193.	8.0	224
40	Co-SBA-15 for heterogeneous oxidation of phenol with sulfate radical for wastewater treatment. Catalysis Today, 2011, 175, 380-385.	4.4	216
41	Nanodiamonds in sp 2 /sp 3 configuration for radical to nonradical oxidation: Core-shell layer dependence. Applied Catalysis B: Environmental, 2018, 222, 176-181.	20.2	214
42	Boosting Fenton-Like Reactions via Single Atom Fe Catalysis. Environmental Science & Technology, 2019, 53, 11391-11400.	10.0	210
43	Excellent performance of copper based metal organic framework in adsorptive removal of toxic sulfonamide antibiotics from wastewater. Journal of Colloid and Interface Science, 2016, 478, 344-352.	9.4	208
44	Magnetic CoFe ₂ O ₄ –Graphene Hybrids: Facile Synthesis, Characterization, and Catalytic Properties. Industrial & Engineering Chemistry Research, 2012, 51, 6044-6051.	3.7	205
45	Nitrogen-doped bamboo-like carbon nanotubes with Ni encapsulation for persulfate activation to remove emerging contaminants with excellent catalytic stability. Chemical Engineering Journal, 2018, 332, 398-408.	12.7	199
46	Preparation and Characterization of Visible-Light-Driven Carbonâ^'Sulfur-Codoped TiO2Photocatalysts. Industrial & Engineering Chemistry Research, 2006, 45, 4971-4976.	3.7	198
47	Adsorptive removal of antibiotic sulfonamide by UiO-66 and ZIF-67 for wastewater treatment. Journal of Colloid and Interface Science, 2017, 500, 88-95.	9.4	198
48	Shape-controlled activation of peroxymonosulfate by single crystal α-Mn2O3 for catalytic phenol degradation in aqueous solution. Applied Catalysis B: Environmental, 2014, 154-155, 246-251.	20.2	196
49	2D/2D nano-hybrids of \hat{I}^3 -MnO 2 on reduced graphene oxide for catalytic ozonation and coupling peroxymonosulfate activation. Journal of Hazardous Materials, 2016, 301, 56-64.	12.4	195
50	Fabrication of Fe3O4/SiO2 core/shell nanoparticles attached to graphene oxide and its use as an adsorbent. Journal of Colloid and Interface Science, 2012, 379, 20-26.	9.4	194
51	Low temperature combustion synthesis of nitrogen-doped graphene for metal-free catalytic oxidation. Journal of Materials Chemistry A, 2015, 3, 3432-3440.	10.3	194
52	Bread-making synthesis of hierarchically Co@C nanoarchitecture in heteroatom doped porous carbons for oxidative degradation of emerging contaminants. Applied Catalysis B: Environmental, 2018, 225, 76-83.	20.2	194
53	Nano-Fe ⁰ Encapsulated in Microcarbon Spheres: Synthesis, Characterization, and Environmental Applications. ACS Applied Materials & amp; Interfaces, 2012, 4, 6235-6241.	8.0	189
54	Synthesis of porous reduced graphene oxide as metal-free carbon for adsorption and catalytic oxidation of organics in water. Journal of Materials Chemistry A, 2013, 1, 5854.	10.3	187

#	Article	IF	CITATIONS
55	Effects of nitrogen-, boron-, and phosphorus-doping or codoping on metal-free graphene catalysis. Catalysis Today, 2015, 249, 184-191.	4.4	185
56	A comparative study of spinel structured Mn3O4, Co3O4 and Fe3O4 nanoparticles in catalytic oxidation of phenolic contaminants in aqueous solutions. Journal of Colloid and Interface Science, 2013, 407, 467-473.	9.4	182
57	Heteroatom (N or Nâ€5)â€Doping Induced Layered and Honeycomb Microstructures of Porous Carbons for CO ₂ Capture and Energy Applications. Advanced Functional Materials, 2016, 26, 8651-8661.	14.9	182
58	Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts. Chemical Engineering Journal, 2013, 214, 298-303.	12.7	181
59	A comparative study of reduced graphene oxide modified TiO2, ZnO and Ta2O5 in visible light photocatalytic/photochemical oxidation of methylene blue. Applied Catalysis B: Environmental, 2014, 146, 162-168.	20.2	178
60	Understanding of the Oxidation Behavior of Benzyl Alcohol by Peroxymonosulfate via Carbon Nanotubes Activation. ACS Catalysis, 2020, 10, 3516-3525.	11.2	178
61	Surface aging behaviour of Fe-based amorphous alloys as catalysts during heterogeneous photo Fenton-like process for water treatment. Applied Catalysis B: Environmental, 2017, 204, 537-547.	20.2	173
62	Phosphorous doped carbon nitride nanobelts for photodegradation of emerging contaminants and hydrogen evolution. Applied Catalysis B: Environmental, 2019, 257, 117931.	20.2	170
63	Carbocatalytic activation of persulfate for removal of antibiotics in water solutions. Chemical Engineering Journal, 2016, 288, 399-405.	12.7	168
64	A New Metal-Free Carbon Hybrid for Enhanced Photocatalysis. ACS Applied Materials & Interfaces, 2014, 6, 16745-16754.	8.0	167
65	Facile Synthesis of Hierarchically Structured Magnetic MnO ₂ /ZnFe ₂ O ₄ Hybrid Materials and Their Performance in Heterogeneous Activation of Peroxymonosulfate. ACS Applied Materials & Interfaces, 2014, 6, 19914-19923.	8.0	166
66	Manganese oxide integrated catalytic ceramic membrane for degradation of organic pollutants using sulfate radicals. Water Research, 2019, 167, 115110.	11.3	165
67	Surface-tailored nanodiamonds as excellent metal-free catalysts for organic oxidation. Carbon, 2016, 103, 404-411.	10.3	164
68	Magnetic Ni-Co alloy encapsulated N-doped carbon nanotubes for catalytic membrane degradation of emerging contaminants. Chemical Engineering Journal, 2019, 362, 251-261.	12.7	164
69	Disordered Atomic Packing Structure of Metallic Glass: Toward Ultrafast Hydroxyl Radicals Production Rate and Strong Electron Transfer Ability in Catalytic Performance. Advanced Functional Materials, 2017, 27, 1702258.	14.9	160
70	Engineered Graphitic Carbon Nitride-Based Photocatalysts for Visible-Light-Driven Water Splitting: A Review. Energy & Fuels, 2021, 35, 6504-6526.	5.1	160
71	Nanosized Co3O4/SiO2 for heterogeneous oxidation of phenolic contaminants in waste water. Separation and Purification Technology, 2011, 77, 230-236.	7.9	159
72	Ferric carbide nanocrystals encapsulated in nitrogen-doped carbon nanotubes as an outstanding environmental catalyst. Environmental Science: Nano, 2017, 4, 170-179.	4.3	155

#	Article	IF	CITATIONS
73	Flower-like MoS2 on graphitic carbon nitride for enhanced photocatalytic and electrochemical hydrogen evolutions. Applied Catalysis B: Environmental, 2018, 239, 334-344.	20.2	154
74	Halogen element modified titanium dioxide for visible light photocatalysis. Chemical Engineering Journal, 2010, 162, 437-447.	12.7	153
75	Magnetic Fe3O4/carbon sphere/cobalt composites for catalytic oxidation of phenol solutions with sulfate radicals. Chemical Engineering Journal, 2014, 245, 1-9.	12.7	153
76	One-pot synthesis of N-doped graphene for metal-free advanced oxidation processes. Carbon, 2016, 102, 279-287.	10.3	148
77	Co3O4 nanocrystals with predominantly exposed facets: synthesis, environmental and energy applications. Journal of Materials Chemistry A, 2013, 1, 14427.	10.3	147
78	Adsorption and heterogeneous advanced oxidation of phenolic contaminants using Fe loaded mesoporous SBA-15 and H2O2. Chemical Engineering Journal, 2010, 164, 255-260.	12.7	143
79	Physical and chemical activation of reduced graphene oxide for enhanced adsorption and catalytic oxidation. Nanoscale, 2014, 6, 766-771.	5.6	143
80	Design and engineering heterojunctions for the photoelectrochemical monitoring of environmental pollutants: A review. Applied Catalysis B: Environmental, 2019, 248, 405-422.	20.2	141
81	Nanocarbon-Based Catalytic Ozonation for Aqueous Oxidation: Engineering Defects for Active Sites and Tunable Reaction Pathways. ACS Catalysis, 2020, 10, 13383-13414.	11.2	141
82	One-pot hydrothermal synthesis of ZnO-reduced graphene oxide composites using Zn powders for enhanced photocatalysis. Chemical Engineering Journal, 2013, 229, 533-539.	12.7	137
83	Oxygen Vacancies in Shape Controlled Cu ₂ O/Reduced Graphene Oxide/In ₂ O ₃ Hybrid for Promoted Photocatalytic Water Oxidation and Degradation of Environmental Pollutants. ACS Applied Materials & Interfaces, 2017, 9, 11678-11688.	8.0	137
84	α-MnO2 activation of peroxymonosulfate for catalytic phenol degradation in aqueous solutions. Catalysis Communications, 2012, 26, 144-148.	3.3	136
85	Monodisperse Co3O4 quantum dots on porous carbon nitride nanosheets for enhanced visible-light-driven water oxidation. Applied Catalysis B: Environmental, 2018, 223, 2-9.	20.2	130
86	Tailored synthesis of active reduced graphene oxides from waste graphite: Structural defects and pollutant-dependent reactive radicals in aqueous organics decontamination. Applied Catalysis B: Environmental, 2018, 229, 71-80.	20.2	128
87	Nitrogen defects/boron dopants engineered tubular carbon nitride for efficient tetracycline hydrochloride photodegradation and hydrogen evolution. Applied Catalysis B: Environmental, 2022, 303, 120932.	20.2	127
88	Metal-free activation of persulfate by cubic mesoporous carbons for catalytic oxidation via radical and nonradical processes. Catalysis Today, 2018, 307, 140-146.	4.4	121
89	Oxygen functional groups in graphitic carbon nitride for enhanced photocatalysis. Journal of Colloid and Interface Science, 2016, 468, 176-182.	9.4	117
90	Interfacial-engineered cobalt@carbon hybrids for synergistically boosted evolution of sulfate radicals toward green oxidation. Applied Catalysis B: Environmental, 2019, 256, 117795.	20.2	117

#	Article	IF	CITATIONS
91	One-pot synthesis of binary metal organic frameworks (HKUST-1 and UiO-66) for enhanced adsorptive removal of water contaminants. Journal of Colloid and Interface Science, 2017, 490, 685-694.	9.4	116
92	Sustainable redox processes induced by peroxymonosulfate and metal doping on amorphous manganese dioxide for nonradical degradation of water contaminants. Applied Catalysis B: Environmental, 2021, 286, 119903.	20.2	115
93	Photocatalytic degradation of 4-chlorophenol with combustion synthesized TiO2 under visible light irradiation. Chemical Engineering Journal, 2007, 128, 127-133.	12.7	113
94	Coal fly ash supported Co3O4 catalysts for phenol degradation using peroxymonosulfate. RSC Advances, 2012, 2, 5645.	3.6	112
95	Research Advances in the Synthesis of Nanocarbon-Based Photocatalysts and Their Applications for Photocatalytic Conversion of Carbon Dioxide to Hydrocarbon Fuels. Energy & Fuels, 2014, 28, 22-36.	5.1	112
96	Activated carbons as green and effective catalysts for generation of reactive radicals in degradation of aqueous phenol. RSC Advances, 2013, 3, 21905.	3.6	111
97	Fundamental Advances in Biomass Autothermal/Oxidative Pyrolysis: A Review. ACS Sustainable Chemistry and Engineering, 2020, 8, 11888-11905.	6.7	111
98	Laves phase precipitation in Ti-Zr-Fe-Cr alloys with high strength and large plasticity. Materials and Design, 2018, 154, 228-238.	7.0	110
99	Unzipping carbon nanotubes to nanoribbons for revealing the mechanism of nonradical oxidation by carbocatalysis. Applied Catalysis B: Environmental, 2020, 276, 119146.	20.2	108
100	UV-assisted construction of 3D hierarchical rGO/Bi2MoO6 composites for enhanced photocatalytic water oxidation. Chemical Engineering Journal, 2017, 313, 1447-1453.	12.7	102
101	Visible-light-driven TiO2 catalysts doped with low-concentration nitrogen species. Solar Energy Materials and Solar Cells, 2008, 92, 76-83.	6.2	100
102	Graphitic Carbon Nitride-Based Z-Scheme Structure for Photocatalytic CO ₂ Reduction. Energy & Fuels, 2021, 35, 7-24.	5.1	100
103	Effects of amino functionality on uptake of CO2, CH4 and selectivity of CO2/CH4 on titanium based MOFs. Fuel, 2015, 160, 318-327.	6.4	99
104	Template-free synthesis of N-doped carbon with pillared-layered pores as bifunctional materials for supercapacitor and environmental applications. Carbon, 2017, 118, 98-105.	10.3	98
105	Mini-Review on Char Catalysts for Tar Reforming during Biomass Gasification: The Importance of Char Structure. Energy & Fuels, 2020, 34, 1219-1229.	5.1	98
106	Submicron sized water-stable metal organic framework (bio-MOF-11) for catalytic degradation of pharmaceuticals and personal care products. Chemosphere, 2018, 196, 105-114.	8.2	96
107	Synthesis of Co oxide doped carbon aerogel catalyst and catalytic performance in heterogeneous oxidation of phenol in water. Chemical Engineering Journal, 2011, 174, 376-382.	12.7	95
108	Functional Carbon Nitride Materials in Photoâ€Fenton‣ike Catalysis for Environmental Remediation. Advanced Functional Materials, 2022, 32, .	14.9	93

#	Article	IF	CITATIONS
109	Red mud and fly ash supported Co catalysts for phenol oxidation. Catalysis Today, 2012, 190, 68-72.	4.4	92
110	Novel two-dimensional crystalline carbon nitrides beyond g-C ₃ N ₄ : structure and applications. Journal of Materials Chemistry A, 2021, 9, 17-33.	10.3	92
111	Visible light responsive titania photocatalysts codoped by nitrogen and metal (Fe, Ni, Ag, or Pt) for remediation of aqueous pollutants. Chemical Engineering Journal, 2013, 231, 18-25.	12.7	89
112	Efficient photocatalytic overall water splitting on metal-free 1D SWCNT/2D ultrathin C3N4 heterojunctions via novel non-resonant plasmonic effect. Applied Catalysis B: Environmental, 2020, 278, 119312.	20.2	89
113	High-strength β stabilized Ti-Nb-Fe-Cr alloys with large plasticity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 732, 368-377.	5.6	87
114	Metal-free catalytic ozonation on surface-engineered graphene: Microwave reduction and heteroatom doping. Chemical Engineering Journal, 2019, 355, 118-129.	12.7	86
115	sp ² /sp ³ Framework from Diamond Nanocrystals: A Key Bridge of Carbonaceous Structure to Carbocatalysis. ACS Catalysis, 2019, 9, 7494-7519.	11.2	86
116	Improved Corrosion Resistance on Selective Laser Melting Produced Ti-5Cu Alloy after Heat Treatment. ACS Biomaterials Science and Engineering, 2018, 4, 2633-2642.	5.2	85
117	Magnetically steerable iron oxides-manganese dioxide core–shell micromotors for organic and microplastic removals. Journal of Colloid and Interface Science, 2021, 588, 510-521.	9.4	85
118	Titanate supported cobalt catalysts for photochemical oxidation of phenol under visible light irradiations. Separation and Purification Technology, 2011, 80, 626-634.	7.9	84
119	Ultra-sustainable Fe78Si9B13 metallic glass as a catalyst for activation of persulfate on methylene blue degradation under UV-Vis light. Scientific Reports, 2016, 6, 38520.	3.3	84
120	Flower-like Cobalt Hydroxide/Oxide on Graphitic Carbon Nitride for Visible-Light-Driven Water Oxidation. ACS Applied Materials & Interfaces, 2016, 8, 35203-35212.	8.0	82
121	Adsorption of cerium (III) by HKUST-1 metal-organic framework from aqueous solution. Journal of Colloid and Interface Science, 2019, 542, 421-428.	9.4	81
122	Photochemical degradation of phenol solutions on Co3O4 nanorods with sulfate radicals. Catalysis Today, 2015, 258, 576-584.	4.4	80
123	Photocatalysis of C, N-doped ZnO derived from ZIF-8 for dye degradation and water oxidation. RSC Advances, 2016, 6, 95903-95909.	3.6	79
124	Heterostructured WO ₃ @CoWO ₄ bilayer nanosheets for enhanced visible-light photo, electro and photoelectro-chemical oxidation of water. Journal of Materials Chemistry A, 2018, 6, 6265-6272.	10.3	79
125	New insight to the role of edges and heteroatoms in nanocarbons for oxygen reduction reaction. Nano Energy, 2019, 66, 104096.	16.0	79
126	Room-light-induced indoor air purification using an efficient Pt/N-TiO2 photocatalyst. Applied Catalysis B: Environmental, 2011, 108-109, 127-133.	20.2	78

#	Article	IF	CITATIONS
127	Catalysis of a Single Transition Metal Site for Water Oxidation: From Mononuclear Molecules to Single Atoms. Advanced Materials, 2020, 32, e1904037.	21.0	78
128	Superior performance of FeVO4@CeO2 uniform core-shell nanostructures in heterogeneous Fenton-sonophotocatalytic degradation of 4-nitrophenol. Journal of Hazardous Materials, 2020, 382, 121059.	12.4	77
129	Coupling hydrothermal and photothermal single-atom catalysis toward excellent water splitting to hydrogen. Applied Catalysis B: Environmental, 2021, 283, 119660.	20.2	77
130	Egg-shaped core/shell α-Mn2O3@α-MnO2 as heterogeneous catalysts for decomposition of phenolics in aqueous solutions. Chemosphere, 2016, 159, 351-358.	8.2	76
131	Temperature dependent photocatalysis of g-C3N4, TiO2 and ZnO: Differences in photoactive mechanism. Journal of Colloid and Interface Science, 2018, 532, 321-330.	9.4	76
132	Novel polyoxometalate@g-C3N4 hybrid photocatalysts for degradation of dyes and phenolics. Journal of Colloid and Interface Science, 2015, 456, 15-21.	9.4	75
133	Resemblance in Corrosion Behavior of Selective Laser Melted and Traditional Monolithic \hat{l}^2 Ti-24Nb-4Zr-8Sn Alloy. ACS Biomaterials Science and Engineering, 2019, 5, 1141-1149.	5.2	75
134	Kinetics and mechanism of synergistic adsorption and persulfate activation by N-doped porous carbon for antibiotics removals in single and binary solutions. Journal of Hazardous Materials, 2022, 423, 127083.	12.4	74
135	Metal-free melem/g-C 3 N 4 hybrid photocatalysts for water treatment. Journal of Colloid and Interface Science, 2016, 464, 10-17.	9.4	73
136	Effects of -NO2 and -NH2 functional groups in mixed-linker Zr-based MOFs on gas adsorption of CO2 and CH4. Progress in Natural Science: Materials International, 2018, 28, 160-167.	4.4	72
137	Cobalt@nitrogen-doped bamboo-structured carbon nanotube to boost photocatalytic hydrogen evolution on carbon nitride. Applied Catalysis B: Environmental, 2019, 254, 443-451.	20.2	72
138	Preparation of a p-n heterojunction BiFeO3@TiO2 photocatalyst with a core–shell structure for visible-light photocatalytic degradation. Chinese Journal of Catalysis, 2017, 38, 1052-1062.	14.0	70
139	Metal-free graphene-carbon nitride hybrids for photodegradation of organic pollutants in water. Catalysis Today, 2015, 258, 668-675.	4.4	69
140	Hierarchical shape-controlled mixed-valence calcium manganites for catalytic ozonation of aqueous phenolic compounds. Catalysis Science and Technology, 2016, 6, 2918-2929.	4.1	69
141	Bifunctionalized Metal Organic Frameworks, UiO-66-NO ₂ -N (N = -NH ₂ ,) Tj ETQq1 1 0. CO ₂ and N ₂ . Journal of Chemical & Engineering Data, 2015, 60, 2152-2161.	784314 rg 1.9	BT /Overlock 67
142	Size dependence of uniformed carbon spheres in promoting graphitic carbon nitride toward enhanced photocatalysis. Applied Catalysis B: Environmental, 2017, 204, 358-364.	20.2	67
143	Origins of boron catalysis in peroxymonosulfate activation and advanced oxidation. Journal of Materials Chemistry A, 2019, 7, 23904-23913.	10.3	67
144	Biomass-derived functional porous carbons for adsorption and catalytic degradation of binary micropollutants in water. Journal of Hazardous Materials, 2020, 389, 121881.	12.4	67

#	Article	IF	CITATIONS
145	Ag2MoO4 nanoparticles encapsulated in g-C3N4 for sunlight photodegradation of pollutants. Catalysis Today, 2018, 315, 205-212.	4.4	66
146	Improved deformation behavior in Ti-Zr-Fe-Mn alloys comprising the C14 type Laves and β phases. Materials and Design, 2018, 160, 1059-1070.	7.0	65
147	Core/shell FeVO4@BiOCl heterojunction as a durable heterogeneous Fenton catalyst for the efficient sonophotocatalytic degradation of p-nitrophenol. Separation and Purification Technology, 2020, 231, 115915.	7.9	65
148	Quasi-MOF derivative-based electrode for efficient electro-Fenton oxidation. Journal of Hazardous Materials, 2021, 401, 123423.	12.4	63
149	Enhanced performance of g-C3N4/TiO2 photocatalysts for degradation of organic pollutants under visible light. Chinese Journal of Chemical Engineering, 2015, 23, 1326-1334.	3.5	62
150	Size-Tailored Porous Spheres of Manganese Oxides for Catalytic Oxidation via Peroxymonosulfate Activation. Journal of Physical Chemistry C, 2016, 120, 16871-16878.	3.1	62
151	Functionalized UiO-66 by Single and Binary (OH) ₂ and NO ₂ Groups for Uptake of CO ₂ and CH ₄ . Industrial & Engineering Chemistry Research, 2016, 55, 7924-7932.	3.7	61
152	Deformation and strength characteristics of Laves phases in titanium alloys. Materials and Design, 2019, 179, 107891.	7.0	61
153	Synthesis of magnetic core/shell carbon nanosphere supported manganese catalysts for oxidation of organics in water by peroxymonosulfate. Journal of Colloid and Interface Science, 2014, 433, 68-75.	9.4	60
154	Corrosion behavior and mechanism of selective laser melted Ti35Nb alloy produced using pre-alloyed and mixed powder in Hank's solution. Corrosion Science, 2021, 189, 109609.	6.6	60
155	Superstructures with Atomic-Level Arranged Perovskite and Oxide Layers for Advanced Oxidation with an Enhanced Non-Free Radical Pathway. ACS Sustainable Chemistry and Engineering, 2022, 10, 1899-1909.	6.7	59
156	Supported cobalt catalysts by one-pot aqueous combustion synthesis for catalytic phenol degradation. Journal of Colloid and Interface Science, 2013, 394, 394-400.	9.4	58
157	Crystal transformation of 2D tungstic acid H2WO4 to WO3 for enhanced photocatalytic water oxidation. Journal of Colloid and Interface Science, 2018, 514, 576-583.	9.4	58
158	Long non-coding RNA Linc00675 suppresses cell proliferation and metastasis in colorectal cancer via acting on miR-942 and Wnt/β-catenin signaling. Biomedicine and Pharmacotherapy, 2018, 101, 769-776.	5.6	58
159	Mechanism of Nitrogen-Concentration Dependence on pH Value: Experimental and Theoretical Studies on Nitrogen-Doped TiO ₂ . Journal of Physical Chemistry C, 2008, 112, 13304-13309.	3.1	56
160	One-step synthesis of flour-derived functional nanocarbons with hierarchical pores for versatile environmental applications. Chemical Engineering Journal, 2018, 347, 432-439.	12.7	56
161	Structuralâ€Phase Catalytic Redox Reactions in Energy and Environmental Applications. Advanced Materials, 2020, 32, e1905739.	21.0	56
162	Hierarchically porous hydrangea-like In2S3/In2O3 heterostructures for enhanced photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2021, 587, 876-882.	9.4	56

#	Article	IF	CITATIONS
163	Heterogeneous electro-Fenton catalysis with self-supporting CFP@MnO2-Fe3O4/C cathode for shale gas fracturing flowback wastewater. Journal of Hazardous Materials, 2021, 412, 125208.	12.4	56
164	Preparation of cobalt/carbon-xerogel for heterogeneous oxidation of phenol. Catalysis Today, 2012, 186, 63-68.	4.4	55
165	Integrated oxygen-doping and dye sensitization of graphitic carbon nitride for enhanced visible light photodegradation. Journal of Colloid and Interface Science, 2016, 476, 193-199.	9.4	55
166	Carbon dots based photocatalysis for environmental applications. Journal of Environmental Chemical Engineering, 2022, 10, 107336.	6.7	55
167	Catalytic degradation of antibiotics by metal-free catalysis over nitrogen-doped graphene. Catalysis Today, 2020, 357, 341-349.	4.4	54
168	Crystallinity and valence states of manganese oxides in Fenton-like polymerization of phenolic pollutants for carbon recycling against degradation. Applied Catalysis B: Environmental, 2022, 315, 121593.	20.2	52
169	Combination of adsorption, photochemical and photocatalytic degradation of phenol solution over supported zinc oxide: Effects of support and sulphate oxidant. Chemical Engineering Journal, 2011, 170, 270-277.	12.7	51
170	Green Synthesis of Carbon Quantum Dots for Sensitized Solar Cells. ChemPhotoChem, 2017, 1, 116-119.	3.0	51
171	Pyrolysis of palm kernel shell with internal recycling of heavy oil. Bioresource Technology, 2019, 272, 77-82.	9.6	51
172	Photocatalytic decomposition of 4-chlorophenol over an efficient N-doped TiO2 under sunlight irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 201, 15-22.	3.9	50
173	Dual-metal zeolitic imidazolate frameworks and their derived nanoporous carbons for multiple environmental and electrochemical applications. Chemical Engineering Journal, 2018, 351, 641-649.	12.7	49
174	Improved trade-off between strength and plasticity in titanium based metastable beta type Ti-Zr-Fe-Sn alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 766, 138340.	5.6	49
175	Surface engineering of hollow carbon nitride microspheres for efficient photoredox catalysis. Chemical Engineering Journal, 2020, 381, 122593.	12.7	49
176	Rigorous and reliable operations for electrocatalytic nitrogen reduction. Applied Catalysis B: Environmental, 2020, 278, 119325.	20.2	49
177	Atomically dispersed cobalt on graphitic carbon nitride as a robust catalyst for selective oxidation of ethylbenzene by peroxymonosulfate. Journal of Materials Chemistry A, 2021, 9, 3029-3035.	10.3	48
178	Spontaneous Formation of Noble―and Heavyâ€Metalâ€Free Alloyed Semiconductor Quantum Rods for Efficient Photocatalysis. Advanced Materials, 2018, 30, e1803351.	21.0	47
179	Cobalt Single Atoms Embedded in Nitrogenâ€Doped Graphene for Selective Oxidation of Benzyl Alcohol by Activated Peroxymonosulfate. Small, 2021, 17, e2004579.	10.0	47
180	Heterogeneous Catalytic Oxidation of Aqueous Phenol on Red Mud-Supported Cobalt Catalysts. Industrial & Engineering Chemistry Research, 2012, 51, 15351-15359.	3.7	45

#	Article	IF	CITATIONS
181	Insights into the Adsorption of VOCs on a Cobalt-Adeninate Metal–Organic Framework (Bio-MOF-11). ACS Omega, 2020, 5, 15402-15408.	3.5	45
182	Three-Dimensional BiOI/BiOX (X = Cl or Br) Nanohybrids for Enhanced Visible-Light Photocatalytic Activity. Nanomaterials, 2017, 7, 64.	4.1	44
183	Solution combustion synthesis of Co oxide-based catalysts for phenol degradation in aqueous solution. Journal of Colloid and Interface Science, 2012, 372, 58-62.	9.4	43
184	One-pot hydrothermal synthesis of Co(OH)2 nanoflakes on graphene sheets and their fast catalytic oxidation of phenol in liquid phase. Journal of Colloid and Interface Science, 2013, 402, 230-236.	9.4	43
185	Nickel in hierarchically structured nitrogen-doped graphene for robust and promoted degradation of antibiotics. Journal of Cleaner Production, 2019, 218, 202-211.	9.3	43
186	Nitrogen-doped Carbon Nanospheres-Modified Graphitic Carbon Nitride with Outstanding Photocatalytic Activity. Nano-Micro Letters, 2020, 12, 24.	27.0	43
187	Heterogeneous activation of peroxymonosulfate by Co-doped Fe2O3 nanospheres for degradation of p-hydroxybenzoic acid. Journal of Colloid and Interface Science, 2021, 604, 390-401.	9.4	43
188	Electrochemical synthesis of graphene/MnO 2 in an architecture of bilayer microtubes as micromotors. Chemical Engineering Journal, 2017, 324, 251-258.	12.7	42
189	High-speed graphene@Ag-MnO2 micromotors at low peroxide levels. Journal of Colloid and Interface Science, 2018, 528, 271-280.	9.4	42
190	A Hydrogen-Initiated Chemical Epitaxial Growth Strategy for In-Plane Heterostructured Photocatalyst. ACS Nano, 2020, 14, 17505-17514.	14.6	41
191	Enhanced removals of micropollutants in binary organic systems by biomass derived porous carbon/peroxymonosulfate. Journal of Hazardous Materials, 2021, 408, 124459.	12.4	41
192	Aligning potential differences within carbon nitride based photocatalysis for efficient solar energy harvesting. Nano Energy, 2021, 89, 106357.	16.0	41
193	Carbon microspheres supported cobalt catalysts for phenol oxidation with peroxymonosulfate. Chemical Engineering Research and Design, 2015, 101, 15-21.	5.6	40
194	Heterogeneous activation of peroxymonosulfate by hierarchically porous cobalt/iron bimetallic oxide nanosheets for degradation of phenol solutions. Chemosphere, 2020, 256, 127160.	8.2	40
195	Enhanced CO ₂ Adsorption and Selectivity of CO ₂ /N ₂ on Amino-MIL-53(Al) Synthesized by Polar Co-solvents. Energy & Fuels, 2018, 32, 4502-4510.	5.1	39
196	Cuprous/Vanadium Sites on MIL-101 for Selective CO Adsorption from Gas Mixtures with Superior Stability. ACS Sustainable Chemistry and Engineering, 2019, 7, 11284-11292.	6.7	39
197	Graphitic Carbon Nitride Microtubes for Efficient Photocatalytic Overall Water Splitting: The Morphology Derived Electrical Field Enhancement. ACS Sustainable Chemistry and Engineering, 2020, 8, 14386-14396.	6.7	39
198	Application of Biochar Derived From Pyrolysis of Waste Fiberboard on Tetracycline Adsorption in Aqueous Solution. Frontiers in Chemistry, 2019, 7, 943.	3.6	39

#	Article	IF	CITATIONS
199	A comparative study of metal (Ni, Co, or Mn)-borate catalysts and their photodeposition on rGO/ZnO nanoarrays for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2018, 6, 24149-24156.	10.3	38
200	Zn phthalocyanine/carbon nitride heterojunction for visible light photoelectrocatalytic conversion of CO2 to methanol. Journal of Catalysis, 2019, 371, 214-223.	6.2	38
201	Regulation of energetic hot carriers on Pt/TiO2 with thermal energy for photothermal catalysis. Applied Catalysis B: Environmental, 2022, 309, 121263.	20.2	38
202	Worm-like FeS ₂ /TiO ₂ Nanotubes for Photoelectrocatalytic Reduction of CO ₂ to Methanol under Visible Light. Energy & Fuels, 2018, 32, 4357-4363.	5.1	37
203	Quasi single cobalt sites in nanopores for superior catalytic oxidation of organic pollutants. Environmental Science: Nano, 2018, 5, 2842-2852.	4.3	37
204	Selective adsorption of rare earth ions from aqueous solution on metal-organic framework HKUST-1. Chemical Engineering Journal Advances, 2020, 1, 100009.	5.2	36
205	Acidification and bubble template derived porous g-C3N4 for efficient photodegradation and hydrogen evolution. Chinese Chemical Letters, 2020, 31, 2668-2672.	9.0	36
206	Conversion and transformation of N species during pyrolysis of wood-based panels: A review. Environmental Pollution, 2021, 270, 116120.	7.5	36
207	Carbon nitride-based Z-scheme heterojunctions for solar-driven advanced oxidation processes. Journal of Hazardous Materials, 2022, 434, 128866.	12.4	36
208	Co@C/CoOx coupled with N-doped layer-structured carbons for excellent CO2 capture and oxygen reduction reaction. Carbon, 2018, 133, 306-315.	10.3	34
209	Functional carbon nitride materials for water oxidation: from heteroatom doping to interface engineering. Nanoscale, 2020, 12, 6937-6952.	5.6	34
210	Roles of Catalyst Structure and Gas Surface Reaction in the Generation of Hydroxyl Radicals for Photocatalytic Oxidation. ACS Catalysis, 2022, 12, 2770-2780.	11.2	34
211	2D Transition Metal Dichalcogenides and Graphene-Based Ternary Composites for Photocatalytic Hydrogen Evolution and Pollutants Degradation. Nanomaterials, 2017, 7, 62.	4.1	33
212	Atomic heterojunction-induced accelerated charge transfer for boosted photocatalytic hydrogen evolution over 1D CdS nanorod/2D ZnIn2S4 nanosheet composites. Journal of Colloid and Interface Science, 2021, 604, 500-507.	9.4	33
213	Solar Photocatalytic Water Oxidation and Purification on ZIF-8-Derived C–N–ZnO Composites. Energy & Fuels, 2017, 31, 2138-2143.	5.1	32
214	Hematite-based nanomaterials for photocatalytic degradation of pharmaceuticals and personal care products (PPCPs): A short review. Current Opinion in Green and Sustainable Chemistry, 2021, 28, 100447.	5.9	32
215	Metal-free hybrids of graphitic carbon nitride and nanodiamonds for photoelectrochemical and photocatalytic applications. Journal of Colloid and Interface Science, 2017, 493, 275-280.	9.4	31
216	Photocatalytic reforming of biomass for hydrogen production over ZnS nanoparticles modified carbon nitride nanosheets. Journal of Colloid and Interface Science, 2019, 555, 22-30.	9.4	31

#	Article	IF	CITATIONS
217	Graphitic Carbon Nitride Decorated with CoP Nanocrystals for Enhanced Photocatalytic and Photoelectrochemical H ₂ Evolution. Energy & Fuels, 2019, 33, 11663-11676.	5.1	31
218	Comparative Investigation of Photocatalytic Degradation of Toluene on Nitrogen Doped Ta2O5 and Nb2O5 Nanoparticles. Industrial & Engineering Chemistry Research, 2013, 52, 3320-3328.	3.7	30
219	Chapter 6. Catalytic oxidation of organic pollutants in aqueous solution using sulfate radicals. Catalysis, 0, , 209-247.	1.0	30
220	Efficient removal of organic pollutants by ceramic hollow fibre supported composite catalyst. Sustainable Materials and Technologies, 2019, 20, e00108.	3.3	30
221	Volatile–char interactions during biomass pyrolysis: Cleavage of C–C bond in a β–5 lignin model dimer by amino-modified graphitized carbon nanotube. Bioresource Technology, 2020, 307, 123192.	9.6	30
222	Photocatalytic oxidation of water and air contaminants with metal doped BiTaO4 irradiated with visible light. Catalysis Today, 2012, 192, 203-212.	4.4	28
223	Synergy of carbocatalytic and heat activation of persulfate for evolution of reactive radicals toward metal-free oxidation. Catalysis Today, 2020, 355, 319-324.	4.4	28
224	Confinement of Ag(I) Sites within MIL-101 for Robust Ethylene/Ethane Separation. ACS Sustainable Chemistry and Engineering, 2020, 8, 823-830.	6.7	28
225	Synergy of NiO quantum dots and temperature on enhanced photocatalytic and thermophoto hydrogen evolution. Chemical Engineering Journal, 2020, 390, 124634.	12.7	27
226	Manganeseâ€Based Micro/Nanomotors: Synthesis, Motion, and Applications. Small, 2021, 17, e2100927.	10.0	27
227	Cascade applications of robust MIL-96 metal organic frameworks in environmental remediation: Proof of concept. Chemical Engineering Journal, 2018, 341, 262-271.	12.7	26
228	UVC-assisted photocatalytic degradation of carbamazepine by Nd-doped Sb2O3/TiO2 photocatalyst. Journal of Colloid and Interface Science, 2020, 562, 461-469.	9.4	26
229	Wet-Chemical Synthesis of InTaO4 for Photocatalytic Decomposition of Organic Contaminants in Air and Water with UV–vis Light. Industrial & Engineering Chemistry Research, 2012, 51, 1563-1569.	3.7	25
230	Facile synthesis of Co-N-rGO composites as an excellent electrocatalyst for oxygen reduction reaction. Chemical Engineering Science, 2019, 194, 45-53.	3.8	25
231	Synergy of intermolecular Donor-Acceptor and ultrathin structures in crystalline carbon nitride for efficient photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2022, 607, 1603-1612.	9.4	25
232	One–pot synthesis of boron and nitrogen co–doped nanocarbons for efficient catalytic reduction of nitrophenols. Chemical Engineering Journal, 2022, 439, 135733.	12.7	25
233	Pt-Free microengines at extremely low peroxide levels. Chemical Communications, 2018, 54, 4653-4656.	4.1	24
234	Ultrafine copper nanoclusters and single sites for Fenton-like reactions with high atom utilities. Environmental Science: Nano, 2020, 7, 2595-2606.	4.3	24

#	Article	IF	CITATIONS
235	Effects of inter/intralayer adsorption and direct/indirect reaction on photo-removal of pollutants by layered g-C3N4 and BiOBr. Journal of Cleaner Production, 2021, 322, 129025.	9.3	24
236	Three-dimensional nitrogen-doped graphene oxide beads for catalytic degradation of aqueous pollutants. Chemical Engineering Journal, 2022, 446, 137042.	12.7	24
237	Visible light photocatalytic degradation of organics on nanoparticles of bi-metallic oxides. Separation and Purification Technology, 2012, 89, 98-106.	7.9	23
238	Atomic-level design of CoOH ⁺ –hydroxyapatite@C catalysts for superfast degradation of organics <i>via</i> peroxymonosulfate activation. Chemical Communications, 2018, 54, 4919-4922.	4.1	23
239	Volatile-char interactions during biomass pyrolysis: Contribution of amino group on graphitized carbon nanotube to xylose evolution based on experimental and theoretical studies. Fuel, 2020, 282, 118921.	6.4	23
240	Temperature-Induced Variations in Photocatalyst Properties and Photocatalytic Hydrogen Evolution: Differences in UV, Visible, and Infrared Radiation. ACS Sustainable Chemistry and Engineering, 2021, 9, 7277-7285.	6.7	23
241	An efficient and robust exfoliated bentonite/Ag ₃ PO ₄ /AgBr plasmonic photocatalyst for degradation of parabens. RSC Advances, 2020, 10, 16027-16037.	3.6	22
242	Promoted Production of Phenolic Monomers from Lignin-First Depolymerization of Lignocellulose over Ru Supported on Biochar by N,P- <i>co</i> -Doping. ACS Sustainable Chemistry and Engineering, 2022, 10, 2343-2354.	6.7	22
243	Efficient electro-Fenton catalysis by self-supported CFP@CoFe2O4 electrode. Journal of Hazardous Materials, 2022, 423, 127033.	12.4	21
244	Grand Challenges in Environmental Nanotechnology. Frontiers in Nanotechnology, 2019, 1, .	4.8	20
245	Hydrogenolysis of lignin to phenolic monomers over Ru based catalysts with different metal-support interactions: Effect of partial hydrogenation of C(sp2)-O/C. Fuel, 2021, 302, 121184.	6.4	20
246	Graphitic carbon nitride nanosheets via acid pretreatments for promoted photocatalysis toward degradation of organic pollutants. Journal of Colloid and Interface Science, 2022, 608, 1334-1347.	9.4	20
247	Synthesis of carbon xerogels at varying sol–gel pHs, dye adsorption and chemical regeneration. Chemical Engineering Journal, 2011, 171, 1399-1405.	12.7	19
248	Tailoring collaborative N–O functionalities of graphene oxide for enhanced selective oxidation of benzyl alcohol. Carbon, 2021, 182, 715-724.	10.3	19
249	Porous Nitrogen-Defected Carbon Nitride Derived from A Precursor Pretreatment Strategy for Efficient Photocatalytic Degradation and Hydrogen Evolution. Langmuir, 2022, 38, 828-837.	3.5	19
250	Morphology/facet-dependent photo-Fenton-like degradation of pharmaceuticals and personal care products over hematite nanocrystals. Chemical Engineering Journal, 2022, 432, 134429.	12.7	18
251	Highly dispersive Ru confined in porous ultrathin g-C3N4 nanosheets as an efficient peroxymonosulfate activator for removal of organic pollutants. Journal of Hazardous Materials, 2022, 435, 128939.	12.4	18
252	Design and Synthesis of a New Mannitol Stearate Ester-Based Aluminum Alkoxide as a Novel Tri-Functional Additive for Poly(Vinyl Chloride) and Its Synergistic Effect with Zinc Stearate. Polymers, 2019, 11, 1031.	4.5	17

#	Article	IF	CITATIONS
253	Ultrathin nickel-cobalt inorganic-organic hydroxide hybrid nanobelts as highly efficient electrocatalysts for oxygen evolution reaction. Electrochimica Acta, 2019, 318, 966-976.	5.2	17
254	Enhanced humidity sensing of functionalized reduced graphene oxide with 4-chloro-3-sulfophenylazo groups. Sensors and Actuators B: Chemical, 2019, 287, 258-266.	7.8	17
255	Intrinsic Mechanisms of Morphological Engineering and Carbon Doping for Improved Photocatalysis of 2D/2D Carbon Nitride Van Der Waals Heterojunction. Energy and Environmental Materials, 2023, 6, .	12.8	17
256	Comment on "Activation of Persulfate by Graphitized Nanodiamonds for Removal of Organic Compounds― Environmental Science & Technology, 2017, 51, 5351-5352.	10.0	16
257	Challenges in radical/nonradical-based advanced oxidation processes for carbon recycling. Chem Catalysis, 2022, 2, 1858-1869.	6.1	16
258	Facile Synthesis of Di-Mannitol Adipate Ester-Based Zinc Metal Alkoxide as a Bi-Functional Additive for Poly(Vinyl Chloride). Polymers, 2019, 11, 813.	4.5	15
259	Sulfate radical-based advanced oxidation processes for water decontamination using biomass-derived carbon as catalysts. Current Opinion in Chemical Engineering, 2022, 37, 100838.	7.8	15
260	Effect of Preparation Conditions on Visible Photocatalytic Activity of Titania Synthesized by Solution Combustion Method. Chinese Journal of Chemical Engineering, 2007, 15, 178-183.	3.5	14
261	Removal of Phenol Using Sulphate Radicals Activated by Natural Zeolite-Supported Cobalt Catalysts. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	14
262	Synthesis of pentaerythritol stearate esterâ€based zinc alkoxide and its synergistic effect with calcium stearate and zinc stearate on PVC thermal stability. Journal of Vinyl and Additive Technology, 2018, 24, 314-323.	3.4	14
263	Photoelectrochemical Water Oxidation and Longevous Photoelectric Conversion by a Photosystem II Electrode. Advanced Energy Materials, 2021, 11, 2100911.	19.5	13
264	Morphology-dependent photocatalysis of graphitic carbon nitride for sustainable remediation of aqueous pollutants: A mini review. Journal of Environmental Chemical Engineering, 2022, 10, 107438.	6.7	13
265	van der Waals type II carbon nitride homojunctions for visible light photocatalytic hydrogen evolution. Nano Research, 2023, 16, 5864-5872.	10.4	12
266	Decomposition of benzyl phenyl ether over char-supported Ni: The effect of char structures. Fuel Processing Technology, 2021, 221, 106941.	7.2	12
267	Carbon nitride-based Z-scheme photocatalysts for non-sacrificial overall water splitting. Materials Today Energy, 2022, 23, 100915.	4.7	12
268	Atomic H* mediated fast decontamination of antibiotics by bubble-propelled magnetic iron-manganese oxides core-shell micromotors. Applied Catalysis B: Environmental, 2022, 314, 121484.	20.2	11
269	Synthesis of Magnetic Carbon Supported Manganese Catalysts for Phenol Oxidation by Activation of Peroxymonosulfate. Catalysts, 2017, 7, 3.	3.5	10
270	Temperature-dependent evolution of hydroxyl radicals from peroxymonosulfate activation over nitrogen-modified carbon nanotubes. Sustainable Materials and Technologies, 2018, 18, e00082.	3.3	10

#	Article	IF	CITATIONS
271	Deformation and toughness behavior of β -type titanium alloys comprising C15-type Laves phase. Materials Today Sustainability, 2020, 9, 100034.	4.1	10
272	Wastewater Remediation Technologies Using Macroscopic Graphene-Based Materials: A Perspective. Frontiers in Nanotechnology, 2021, 3, .	4.8	10
273	N Evolution and Physiochemical Structure Changes in Chars during Co-Pyrolysis: Effects of Abundance of Glucose in Fiberboard. Energies, 2020, 13, 5105.	3.1	9
274	Selective oxidation of alcohols by graphene-like carbon with electrophilic oxygen and integrated pyridinic nitrogen active sites. Nanoscale, 2021, 13, 12979-12990.	5.6	9
275	Porous Carbon: Heteroatom (N or N-S)-Doping Induced Layered and Honeycomb Microstructures of Porous Carbons for CO2 Capture and Energy Applications (Adv. Funct. Mater. 47/2016). Advanced Functional Materials, 2016, 26, 8650-8650.	14.9	7
276	COSMO-based solvent selection and Aspen Plus process simulation for tar absorptive removal. Applied Energy, 2019, 251, 113314.	10.1	7
277	Encapsulation of cuprous/cobalt sites in metal organic framework for enhanced C2H4/C2H6 separation. Journal of Colloid and Interface Science, 2021, 583, 605-613.	9.4	7
278	Enhanced adsorption and visible-light photocatalysis on TiO2 with in situ formed carbon quantum dots. Environmental Science and Pollution Research, 2022, 29, 56379-56392.	5.3	7
279	Quasi-solid-state self-assembly of 1D-branched ZnSe/ZnS quantum rods into parallel monorail-like continuous films for solar devices. Nano Energy, 2021, 89, 106348.	16.0	6
280	Direct Z-scheme SiNWs@Co3O4 photocathode with a cocatalyst of sludge-derived carbon quantum dots for efficient photoelectrochemical hydrogen production. Science of the Total Environment, 2021, 796, 148931.	8.0	5
281	Editorial: Environmental Catalysis and the Corresponding Catalytic Mechanism. Frontiers in Chemistry, 2019, 7, 75.	3.6	4
282	The effect of carbon structure in chars on Fe migration and its catalytic activity for benzyl phenyl ether decomposition. Journal of Analytical and Applied Pyrolysis, 2021, 154, 105008.	5.5	4
283	Location and size regulation of manganese oxides within mesoporous silica for enhanced antibiotic degradation. Chinese Journal of Chemical Engineering, 2022, 48, 36-43.	3.5	4
284	Effects of pH Values on the Physicochemical Properties and Photocatalytic Activities of Nitrogen-doped TiO ₂ . Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2008, 23, 387-392.	1.3	4
285	Controllable synthesis of a hollow Cr2O3 electrocatalyst for enhanced nitrogen reduction toward ammonia synthesis. Chinese Journal of Chemical Engineering, 2022, 41, 358-365.	3.5	4
286	Nanoscale in Photocatalysis. Nanomaterials, 2017, 7, 86.	4.1	3
287	Simulated biomass tar removal mechanism by a Quench Coupled with ADsorption Technology (QCADT). Chinese Journal of Chemical Engineering, 2020, 28, 279-285.	3.5	3
288	The Study on the Pathogenesis of Pediatric Lymphoma Based on the Combination of Pseudotargeted and Targeted Metabolomics. BioMed Research International, 2021, 2021, 1-10.	1.9	3

#	Article	IF	CITATIONS
289	Nano-sized FeVO4·1.1H2O and FeVO4 for peroxymonosulfate activation towards enhanced photocatalytic activity. Journal of Environmental Chemical Engineering, 2022, 10, 107199.	6.7	3
290	Unzipping MWCNTs for controlled edge- and heteroatom-defects in revealing their roles in gas-phase oxidative dehydrogenation of ethanol to acetaldehyde. Chemical Engineering Journal, 2022, 446, 137150.	12.7	2
291	Carbon nitride photocatalysts. , 2018, , 103-126.		1
292	Mechanism of the Doping Species Controlling the UV Photocatalytic Activity of Nitrogen Doped TiO ₂ . Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2009, 24, 443-447.	1.3	1