
Markus Müller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7615823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensitive Immunopeptidomics by Leveraging Available Large-Scale Multi-HLA Spectral Libraries, Data-Independent Acquisition, and MS/MS Prediction. Molecular and Cellular Proteomics, 2021, 20, 100080.	2.5	49
2	Automatic Annotation and Dereplication of Tandem Mass Spectra of Peptidic Natural Products. Analytical Chemistry, 2020, 92, 15862-15871.	3.2	18
3	Biogenesis of HLA Ligand Presentation in Immune Cells Upon Activation Reveals Changes in Peptide Length Preference. Frontiers in Immunology, 2020, 11, 1981.	2.2	9
4	Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical peptides in tumor immunopeptidomes. Nature Communications, 2020, 11, 1293.	5.8	196
5	Wnt-controlled sphingolipids modulate Anthrax Toxin Receptor palmitoylation to regulate oriented mitosis in zebrafish. Nature Communications, 2020, 11, 3317.	5.8	8
6	Mass Spectrometry Based Immunopeptidomics Leads to Robust Predictions of Phosphorylated HLA Class I Ligands. Molecular and Cellular Proteomics, 2020, 19, 390-404.	2.5	47
7	Chemical Genetics of AGC-kinases Reveals Shared Targets of Ypk1, Protein Kinase A and Sch9. Molecular and Cellular Proteomics, 2020, 19, 655-671.	2.5	16
8	Comment on "A subset of HLA-I peptides are not genomically templated: Evidence for cis- and trans-spliced peptide ligands― Science Immunology, 2019, 4, .	5.6	39
9	Feasibility and safety of ultra-low tidal volume ventilation without extracorporeal circulation in moderately severe and severe ARDS patients. Intensive Care Medicine, 2019, 45, 1590-1598.	3.9	27
10	Detection of Unknown Chemical Adduct Modifications on Proteins: From Wet to Dry Laboratory. Methods in Molecular Biology, 2019, 1977, 99-113.	0.4	0
11	High-throughput and Sensitive Immunopeptidomics Platform Reveals Profound InterferonÎ ³ -Mediated Remodeling of the Human Leukocyte Antigen (HLA) Ligandome. Molecular and Cellular Proteomics, 2018, 17, 533-548.	2.5	224
12	Estimating the Contribution of Proteasomal Spliced Peptides to the HLA-I Ligandome*. Molecular and Cellular Proteomics, 2018, 17, 2347-2357.	2.5	105
13	Large-Scale Reanalysis of Publicly Available HeLa Cell Proteomics Data in the Context of the Human Proteome Project. Journal of Proteome Research, 2018, 17, 4160-4170.	1.8	21
14	Minimal Information About an Immunoâ€Peptidomics Experiment (MIAIPE). Proteomics, 2018, 18, e1800110.	1.3	23
15	Optimization by infusion of multiple reaction monitoring transitions for sensitive quantification of peptides by liquid chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 2017, 31, 753-761.	0.7	8
16	Glycoforest 1.0. Analytical Chemistry, 2017, 89, 10932-10940.	3.2	24
17	â€~Hotspots' of Antigen Presentation Revealed by Human Leukocyte Antigen Ligandomics for Neoantigen Prioritization. Frontiers in Immunology, 2017, 8, 1367.	2.2	133
18	Detection of busulfan adducts on proteins. Rapid Communications in Mass Spectrometry, 2016, 30, 2517-2528.	0.7	3

Markus Müller

#	Article	IF	CITATIONS
19	Mining Large Scale Tandem Mass Spectrometry Data for Protein Modifications Using Spectral Libraries. Journal of Proteome Research, 2016, 15, 721-731.	1.8	26
20	Unrestricted modification search reveals lysine methylation as major modification induced by tissue formalin fixation and paraffin embedding. Proteomics, 2015, 15, 2568-2579.	1.3	40
21	Processing strategies and software solutions for dataâ€independent acquisition in mass spectrometry. Proteomics, 2015, 15, 964-980.	1.3	143
22	MzJava: An open source library for mass spectrometry data processing. Journal of Proteomics, 2015, 129, 63-70.	1.2	25
23	Comparative Proteomic Profiling of Ehrlichia ruminantium Pathogenic Strain and Its High-Passaged Attenuated Strain Reveals Virulence and Attenuation-Associated Proteins. PLoS ONE, 2015, 10, e0145328.	1.1	28
24	Open source libraries and frameworks for mass spectrometry based proteomics: A developer's perspective. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 63-76.	1.1	67
25	PanelomiX: A threshold-based algorithm to create panels of biomarkers. Translational Proteomics, 2013, 1, 57-64.	1.2	29
26	EasyProt — An easy-to-use graphical platform for proteomics data analysis. Journal of Proteomics, 2013, 79, 146-160.	1.2	57
27	Clustering and Filtering Tandem Mass Spectra Acquired in Data-Independent Mode. Journal of the American Society for Mass Spectrometry, 2013, 24, 1862-1871.	1.2	15
28	Isoelectric point optimization using peptide descriptors and support vector machines. Journal of Proteomics, 2012, 75, 2269-2274.	1.2	36
29	QuickMod: A Tool for Open Modification Spectrum Library Searches. Journal of Proteome Research, 2011, 10, 2913-2921.	1.8	58
30	In silico analysis of accurate proteomics, complemented by selective isolation of peptides. Journal of Proteomics, 2011, 74, 2071-2082.	1.2	30
31	Matrix metalloproteinaseâ€9 and intercellular adhesion molecule 1 are powerful staging markers for human African trypanosomiasis. Tropical Medicine and International Health, 2011, 16, 119-126.	1.0	33
32	pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 2011, 12, 77.	1.2	8,498
33	An improved method for the construction of decoy peptide MS/MS spectra suitable for the accurate estimation of false discovery rates. Proteomics, 2011, 11, 4085-4095.	1.3	25
34	LC/MS Data Processing for Label-Free Quantitative Analysis. Methods in Molecular Biology, 2011, 696, 369-377.	0.4	1
35	Unrestricted identification of modified proteins using MS/MS. Proteomics, 2010, 10, 671-686.	1.3	86
36	Glycation Isotopic Labeling with 13C-Reducing Sugars for Quantitative Analysis of Glycated Proteins in Human Plasma, Molecular and Cellular Proteomics, 2010, 9, 579-592,	2.5	70

Markus Müller

#	Article	IF	CITATIONS
37	A simple workflow to increase MS2 identification rate by subsequent spectral library search. Proteomics, 2009, 9, 1731-1736.	1.3	32
38	Bioinformatics for protein biomarker panel classification: what is needed to bring biomarker panels into <i>in vitro</i> diagnostics?. Expert Review of Proteomics, 2009, 6, 675-689.	1.3	51
39	A Combined CXCL10, CXCL8 and H-FABP Panel for the Staging of Human African Trypanosomiasis Patients. PLoS Neglected Tropical Diseases, 2009, 3, e459.	1.3	62
40	Quantitative Proteomic Analysis of Protein Complexes. Molecular and Cellular Proteomics, 2008, 7, 326-346.	2.5	99
41	<i>SuperHirn</i> – a novel tool for high resolution LCâ€MSâ€based peptide/protein profiling. Proteomics, 2007, 7, 3470-3480.	1.3	295
42	An integrated mass spectrometric and computational framework for the analysis of protein interaction networks. Nature Biotechnology, 2007, 25, 345-352.	9.4	156
43	Analysis of Proteomes Using the Molecular Scanner. Cold Spring Harbor Protocols, 2007, 2007, pdb.prot4592-pdb.prot4592.	0.2	0
44	Automated protein identification by tandem mass spectrometry: Issues and strategies. Mass Spectrometry Reviews, 2006, 25, 235-254.	2.8	143
45	Processing and classification of protein mass spectra. Mass Spectrometry Reviews, 2006, 25, 409-449.	2.8	163
46	Proteomics and Mass Spectrometry. , 2005, , 225-281.		0
47	Signal Traitment and Virtual Images Production (1/2). , 2005, , 151-168.		0
48	Signal Traitment and Virtual Images Production (2/2). , 2005, , 169-188.		0
49	The molecular scanner: concept and developments. Current Opinion in Biotechnology, 2004, 15, 17-23.	3.3	28
50	Machine learning approaches to lung cancer prediction from mass spectra. Proteomics, 2003, 3, 1716-1719.	1.3	52
51	Scoring Functions for Mass Spectrometric Protein Identification. , 2003, , 477-485.		1
52	Molecular scanner experiment with human plasma: Improving protein identification by using intensity distributions of matching peptide masses. Proteomics, 2002, 2, 1413-1425.	1.3	16
53	Visualization and analysis of molecular scanner peptide mass spectra. Journal of the American Society for Mass Spectrometry, 2002, 13, 221-231.	1.2	31

54 Proteomics and Mass Spectrometry. , 2001, , 93-145.

#	Article	IF	CITATIONS
55	The <i>Fab-8</i> boundary defines the distal limit of the bithorax complex <i>iab-7</i> domain and insulates <i>iab-7</i> from initiation elements and a PRE in the adjacent <i>iab-8</i> domain. Development (Cambridge), 2000, 127, 779-790.	1.2	171
56	Improving protein identification from peptide mass fingerprinting through a parameterized multi-level scoring algorithm and an optimized peak detection. Electrophoresis, 1999, 20, 3535-3550.	1.3	140
57	A Molecular Scanner To Automate Proteomic Research and To Display Proteome Images. Analytical Chemistry, 1999, 71, 4981-4988.	3.2	127