
Sinem Beyhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7615529/publications.pdf Version: 2024-02-01

SINEM REVHAN

#	Article	IF	CITATIONS
1	Chromosome-Level Genome Assembly of a Human Fungal Pathogen Reveals Synteny among Geographically Distinct Species. MBio, 2022, 13, e0257421.	4.1	7
2	Decoding Transcription Regulatory Mechanisms Associated with <i>Coccidioides immitis</i> Phase Transition Using Total RNA. MSystems, 2022, 7, e0140421.	3.8	8
3	The WOPR family protein Ryp1 is a key regulator of gene expression, development, and virulence in the the thermally dimorphic fungal pathogen Coccidioides posadasii. PLoS Pathogens, 2022, 18, e1009832.	4.7	9
4	Predicting antimicrobial mechanism-of-action from transcriptomes: A generalizable explainable artificial intelligence approach. PLoS Computational Biology, 2021, 17, e1008857.	3.2	16
5	Transcriptional Analysis of Coccidioides immitis Mycelia and Spherules by RNA Sequencing. Journal of Fungi (Basel, Switzerland), 2021, 7, 366.	3.5	13
6	Predictive Signatures of 19 Antibiotic-Induced <i>Escherichia coli</i> Proteomes. ACS Infectious Diseases, 2020, 6, 2120-2129.	3.8	8
7	A Distinct Contractile Injection System Gene Cluster Found in a Majority of Healthy Adult Human Microbiomes. MSystems, 2020, 5, .	3.8	8
8	Emerging Priorities for Microbiome Research. Frontiers in Microbiology, 2020, 11, 136.	3.5	113
9	Mechanism-of-Action Classification of Antibiotics by Global Transcriptome Profiling. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	56
10	Genetic diversity of clinical and environmental Mucorales isolates obtained from an investigation of mucormycosis cases among solid organ transplant recipients. Microbial Genomics, 2020, 6, .	2.0	10
11	A Bacterial Phage Tail-like Structure Kills Eukaryotic Cells by Injecting a Nuclease Effector. Cell Reports, 2019, 28, 295-301.e4.	6.4	39
12	Sensing the heat and the host: Virulence determinants of Histoplasma capsulatum. Virulence, 2019, 10, 793-800.	4.4	8
13	Opposing signaling pathways regulate morphology in response to temperature in the fungal pathogen Histoplasma capsulatum. PLoS Biology, 2019, 17, e3000168.	5.6	22
14	Secondary Metabolites of Onygenales Fungi Exemplified by <i>Aioliomyces pyridodomos</i> . Journal of Natural Products, 2019, 82, 1616-1626.	3.0	8
15	Onydecalins, Fungal Polyketides with Anti- <i>Histoplasma</i> and Anti-TRP Activity. Journal of Natural Products, 2018, 81, 2605-2611.	3.0	9
16	Environmental and Genetic Factors Controlling Burkholderia pseudomallei Persister Phenotypes. Current Tropical Medicine Reports, 2017, 4, 111-116.	3.7	4
17	The LonA Protease Regulates Biofilm Formation, Motility, Virulence, and the Type VI Secretion System in Vibrio cholerae. Journal of Bacteriology, 2016, 198, 973-985.	2.2	61
18	Cyclic Di-GMP Signaling in Vibrio cholerae. , 2014, , 253-269.		2

SINEM BEYHAN

#	Article	IF	CITATIONS
19	A Temperature-Responsive Network Links Cell Shape and Virulence Traits in a Primary Fungal Pathogen. PLoS Biology, 2013, 11, e1001614.	5.6	115
20	The <i>Vibrio cholerae</i> virulence regulatory cascade controls glucose uptake through activation of TarA, a small regulatory RNA. Molecular Microbiology, 2010, 78, 1171-1181.	2.5	46
21	Identification and Characterization of a Phosphodiesterase That Inversely Regulates Motility and Biofilm Formation in <i>Vibrio cholerae</i> . Journal of Bacteriology, 2010, 192, 4541-4552.	2.2	76
22	<i>>Vibrio cholerae</i> > VpsT Regulates Matrix Production and Motility by Directly Sensing Cyclic di-GMP. Science, 2010, 327, 866-868.	12.6	397
23	The <i>Vibrio cholerae</i> Flagellar Regulatory Hierarchy Controls Expression of Virulence Factors. Journal of Bacteriology, 2009, 191, 6555-6570.	2.2	186
24	Indole Acts as an Extracellular Cue Regulating Gene Expression in <i>Vibrio cholerae</i> . Journal of Bacteriology, 2009, 191, 3504-3516.	2.2	147
25	Cell Envelope Perturbation Induces Oxidative Stress and Changes in Iron Homeostasis in <i>Vibrio cholerae</i> . Journal of Bacteriology, 2009, 191, 5398-5408.	2.2	43
26	Identification and Characterization of Cyclic Diguanylate Signaling Systems Controlling Rugosity in <i>Vibrio cholerae</i> . Journal of Bacteriology, 2008, 190, 7392-7405.	2.2	108
27	Regulation of Rugosity and Biofilm Formation in Vibrio cholerae : Comparison of VpsT and VpsR Regulons and Epistasis Analysis of vpsT , vpsR , and hapR. Journal of Bacteriology, 2007, 189, 388-402.	2.2	170
28	Regulation of Vibrio Polysaccharide Synthesis and Virulence Factor Production by CdgC, a GGDEF-EAL Domain Protein, in Vibrio cholerae. Journal of Bacteriology, 2007, 189, 717-729.	2.2	88
29	Smooth to rugose phase variation in Vibrio cholerae can be mediated by a single nucleotide change that targets câ€diâ€GMP signalling pathway. Molecular Microbiology, 2007, 63, 995-1007.	2.5	115
30	Cyclic-diGMP signal transduction systems in Vibrio cholerae: modulation of rugosity and biofilm formation. Molecular Microbiology, 2006, 60, 331-348.	2.5	179
31	Transcriptome and Phenotypic Responses of Vibrio cholerae to Increased Cyclic di-GMP Level. Journal of Bacteriology, 2006, 188, 3600-3613.	2.2	189
32	Differences in Gene Expression between the Classical and El Tor Biotypes of Vibrio cholerae O1. Infection and Immunity, 2006, 74, 3633-3642.	2.2	72