
Peter Fickert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7615379/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology, 2004, 127, 261-274.	1.3	525
2	Hepatobiliary transporter expression in percutaneous liver biopsies of patients with cholestatic liver diseases. Hepatology, 2001, 33, 633-646.	7.3	324
3	CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice. Hepatology, 2005, 42, 420-430.	7.3	295
4	A New Xenobiotic-Induced Mouse Model of Sclerosing Cholangitis and Biliary Fibrosis. American Journal of Pathology, 2007, 171, 525-536.	3.8	293
5	Ursodeoxycholic acid aggravates bile infarcts in bile duct–ligated and Mdr2 knockout mice via disruption of cholangioles. Gastroenterology, 2002, 123, 1238-1251.	1.3	287
6	24-norUrsodeoxycholic Acid Is Superior to Ursodeoxycholic Acid in the Treatment of Sclerosing Cholangitis in Mdr2 (Abcb4) Knockout Mice. Gastroenterology, 2006, 130, 465-481.	1.3	282
7	Complementary Stimulation of Hepatobiliary Transport and Detoxification Systems by Rifampicin and Ursodeoxycholic Acid in Humans. Gastroenterology, 2005, 129, 476-485.	1.3	268
8	Adaptive changes in hepatobiliary transporter expression in primary biliary cirrhosis. Journal of Hepatology, 2003, 38, 717-727.	3.7	260
9	Effects of Ursodeoxycholic and Cholic Acid Feeding on Hepatocellular Transporter Expression in Mouse Liver. Gastroenterology, 2001, 121, 170-183.	1.3	254
10	Bile Acids as Regulators of Hepatic Lipid and Glucose Metabolism. Digestive Diseases, 2010, 28, 220-224.	1.9	254
11	Role of farnesoid X receptor in determining hepatic ABC transporter expression and liver injury in bile duct-ligated mice. Gastroenterology, 2003, 125, 825-838.	1.3	252
12	Complementary Stimulation of Hepatobiliary Transport and Detoxification Systems by Rifampicin and Ursodeoxycholic Acid in Humans. Gastroenterology, 2005, 129, 476-485.	1.3	235
13	Mdr2 (Abcb4)-/- mice spontaneously develop severe biliary fibrosis via massive dysregulation of pro- and antifibrogenic genes. Journal of Hepatology, 2005, 43, 1045-1054.	3.7	228
14	Inflammation-induced cholestasis. Journal of Gastroenterology and Hepatology (Australia), 1999, 14, 946-959.	2.8	206
15	norUrsodeoxycholic acid improves cholestasis in primary sclerosing cholangitis. Journal of Hepatology, 2017, 67, 549-558.	3.7	202
16	Mechanisms of Disease: mechanisms and clinical implications of cholestasis in sepsis. Nature Reviews Gastroenterology & Hepatology, 2006, 3, 574-585.	1.7	193
17	Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the <i>Mdr2</i> ^{â^'/â^'} (<i>Abcb4</i> ^{â^'/â^'}) mouse cholangiopathy model by promoting biliary HCO 3â^' output. Hepatology, 2011, 54, 1303-1312.	7.3	193
18	<i>MDR3</i> (<i>ABCB4</i>) Defects: A Paradigm for the Genetics of Adult Cholestatic Syndromes. Seminars in Liver Disease, 2007, 27, 077-098.	3.6	188

#	Article	IF	CITATIONS
19	Role of nuclear bile acid receptor, FXR, in adaptive ABC transporter regulation by cholic and ursodeoxycholic acid in mouse liver, kidney and intestine. Journal of Hepatology, 2003, 39, 480-488.	3.7	171
20	Lithocholic Acid Feeding Induces Segmental Bile Duct Obstruction and Destructive Cholangitis in Mice. American Journal of Pathology, 2006, 168, 410-422.	3.8	161
21	Coordinated induction of bile acid detoxification and alternative elimination in mice: role of FXR-regulated organic solute transporter-α/β in the adaptive response to bile acids. American Journal of Physiology - Renal Physiology, 2006, 290, G923-G932.	3.4	154
22	Farnesoid X Receptor Critically Determines the Fibrotic Response in Mice but Is Expressed to a Low Extent in Human Hepatic Stellate Cells and Periductal Myofibroblasts. American Journal of Pathology, 2009, 175, 2392-2405.	3.8	154
23	Role of endoscopy in primary sclerosing cholangitis: European Society of Gastrointestinal Endoscopy (ESGE) and European Association for the Study of the Liver (EASL) Clinical Guideline. Endoscopy, 2017, 49, 588-608.	1.8	154
24	Spontaneous cholecysto- and hepatolithiasis inMdr2?/? mice: A model for low phospholipid-associated cholelithiasis. Hepatology, 2004, 39, 117-128.	7.3	148
25	Molecular Regulation of Hepatobiliary Transport Systems. Journal of Clinical Gastroenterology, 2005, 39, S111-S124.	2.2	148
26	Inhibition of intestinal bile acid absorption improves cholestatic liver and bile duct injury in a mouse model of sclerosing cholangitis. Journal of Hepatology, 2016, 64, 674-681.	3.7	143
27	Biliary bile acids in hepatobiliary injury – What is the link?. Journal of Hepatology, 2017, 67, 619-631.	3.7	141
28	Alterations in Lipid Metabolism Mediate Inflammation, Fibrosis, and Proliferation in a Mouse Model of Chronic Cholestatic Liver Injury. Gastroenterology, 2012, 142, 140-151.e12.	1.3	139
29	Side chain structure determines unique physiologic and therapeutic properties of norursodeoxycholic acid in Mdr2â''/â'' mice. Hepatology, 2009, 49, 1972-1981.	7.3	135
30	Bile acids trigger cholemic nephropathy in common bile-duct-ligated mice. Hepatology, 2013, 58, 2056-2069.	7.3	130
31	Characterization of animal models for primary sclerosing cholangitis (PSC). Journal of Hepatology, 2014, 60, 1290-1303.	3.7	129
32	The keratin cytoskeleton in liver diseases. Journal of Pathology, 2004, 204, 367-376.	4.5	121
33	Hepatobiliary transporter expression in human hepatocellular carcinoma. Liver International, 2005, 25, 367-379.	3.9	112
34	Austrian consensus guidelines on the management and treatment of portal hypertension (BillrothÂIII). Wiener Klinische Wochenschrift, 2017, 129, 135-158.	1.9	111
35	Pathogenesis of primary sclerosing cholangitis. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2011, 25, 727-739.	2.4	104
36	Expression of bile acid synthesis and detoxification enzymes and the alternative bile acid efflux pump MRP4 in patients with primary biliary cirrhosis. Liver International, 2007, 27, 920-929.	3.9	103

Peter Fickert

#	Article	IF	CITATIONS
37	Lessons from the toxic bile concept for the pathogenesis and treatment of cholestatic liver diseases. Wiener Medizinische Wochenschrift, 2008, 158, 542-548.	1.1	102
38	Fxrâ^'/â^' mice adapt to biliary obstruction by enhanced phase I detoxification and renal elimination of bile acids. Journal of Lipid Research, 2006, 47, 582-592.	4.2	98
39	Hepatocyte Cytokeratins Are Hyperphosphorylated at Multiple Sites in Human Alcoholic Hepatitis and in a Mallory Body Mouse Model. American Journal of Pathology, 2000, 156, 77-90.	3.8	89
40	Role of endoscopy in primary sclerosing cholangitis: European Society of Gastrointestinal Endoscopy (ESGE) and European Association for the Study of the Liver (EASL) Clinical Guideline. Journal of Hepatology, 2017, 66, 1265-1281.	3.7	87
41	Differential effects of norUDCA and UDCA in obstructive cholestasis in mice. Journal of Hepatology, 2013, 58, 1201-1208.	3.7	84
42	Curcumin improves sclerosing cholangitis in Mdr2-/- mice by inhibition of cholangiocyte inflammatory response and portal myofibroblast proliferation. Gut, 2010, 59, 521-530.	12.1	83
43	New liver cancer biomarkers: PI3K/AKT/mTOR pathway members and eukaryotic translation initiation factors. European Journal of Cancer, 2017, 83, 56-70.	2.8	82
44	Lithocholic acid feeding results in direct hepato-toxicity independent of neutrophil function in mice. Toxicology Letters, 2014, 228, 56-66.	0.8	81
45	Oncosis represents the main type of cell death in mouse models of cholestasis. Journal of Hepatology, 2005, 42, 378-385.	3.7	80
46	Signal Transducer and Activator of Transcription 3 Protects From Liver Injury and Fibrosis in a Mouse Model of Sclerosing Cholangitis. Gastroenterology, 2010, 138, 2499-2508.	1.3	71
47	Inflammatory Bowel Disease Alters Intestinal Bile Acid Transporter Expression. Drug Metabolism and Disposition, 2014, 42, 1423-1431.	3.3	70
48	Role of nuclear receptors and hepatocyte-enriched transcription factors for Ntcp repression in biliary obstruction in mouse liver. American Journal of Physiology - Renal Physiology, 2005, 289, G798-G805.	3.4	67
49	Induction of short heterodimer partner 1 precedes downregulation of Ntcp in bile duct-ligated mice. American Journal of Physiology - Renal Physiology, 2002, 282, G184-G191.	3.4	66
50	Mycophenolate mofetil in patients with Crohn's disease. American Journal of Gastroenterology, 1998, 93, 2529-2532.	0.4	65
51	Structural and functional differences in gut microbiome composition in patients undergoing haemodialysis or peritoneal dialysis. Scientific Reports, 2017, 7, 15601.	3.3	59
52	Norursodeoxycholic acid versus placebo in the treatment of non-alcoholic fatty liver disease: a double-blind, randomised, placebo-controlled, phase 2 dose-finding trial. The Lancet Gastroenterology and Hepatology, 2019, 4, 781-793.	8.1	58
53	Will we ever model PSC? – "lt's hard to be a PSC model!― Clinics and Research in Hepatology and Gastroenterology, 2011, 35, 792-804.	1.5	56
54	24-nor-ursodeoxycholic acid ameliorates inflammatory response and liver fibrosis in a murine model of hepatic schistosomiasis. Journal of Hepatology, 2015, 62, 871-878.	3.7	55

Peter Fickert

#	Article	IF	CITATIONS
55	Biomarkers for oralization during long-term proton pump inhibitor therapy predict survival in cirrhosis. Scientific Reports, 2019, 9, 12000.	3.3	53
56	Osteopontin is an initial mediator of inflammation and liver injury during obstructive cholestasis after bile duct ligation in mice. Toxicology Letters, 2014, 224, 186-195.	0.8	52
57	Downregulation of TGR5 (GPBAR1) in biliary epithelial cells contributes to the pathogenesis of sclerosing cholangitis. Journal of Hepatology, 2021, 75, 634-646.	3.7	51
58	Bile Acid-Induced Cholemic Nephropathy. Digestive Diseases, 2015, 33, 367-375.	1.9	48
59	FXR-dependent Rubicon induction impairs autophagy in models of human cholestasis. Journal of Hepatology, 2020, 72, 1122-1131.	3.7	47
60	Mallory body formation in primary biliary cirrhosis is associated with increased amounts and abnormal phosphorylation and ubiquitination of cytokeratins. Journal of Hepatology, 2003, 38, 387-394.	3.7	46
61	Lactobacillus casei Shirota Supplementation Does Not Restore Gut Microbiota Composition and Gut Barrier in Metabolic Syndrome: A Randomized Pilot Study. PLoS ONE, 2015, 10, e0141399.	2.5	45
62	NorUrsodeoxycholic acid ameliorates cholemic nephropathy in bile duct ligated mice. Journal of Hepatology, 2017, 67, 110-119.	3.7	44
63	Obeticholic acid may increase the risk of gallstone formation in susceptible patients. Journal of Hepatology, 2019, 71, 986-991.	3.7	44
64	Drug Therapies for Chronic Cholestatic Liver Diseases. Annual Review of Pharmacology and Toxicology, 2020, 60, 503-527.	9.4	44
65	Bile Acid-Induced Mallory Body Formation in Drug-Primed Mouse Liver. American Journal of Pathology, 2002, 161, 2019-2026.	3.8	43
66	Animal Models in Primary Biliary Cirrhosis and Primary Sclerosing Cholangitis. Clinical Reviews in Allergy and Immunology, 2015, 48, 207-217.	6.5	42
67	Cytokeratins as Targets for Bile Acid-Induced Toxicity. American Journal of Pathology, 2002, 160, 491-499.	3.8	40
68	Cytokine-independent repression of rodentNtcp in obstructive cholestasis. Hepatology, 2005, 41, 470-477.	7.3	40
69	Lysosomal Acid Lipase Hydrolyzes Retinyl Ester and Affects Retinoid Turnover. Journal of Biological Chemistry, 2016, 291, 17977-17987.	3.4	40
70	Role of interleukin-1 and its antagonism of hepatic stellate cell proliferation and liver fibrosis in the Abcb4 ^{-/-} mouse model. World Journal of Hepatology, 2016, 8, 401.	2.0	40
71	Indications for liver transplantation in adults. Wiener Klinische Wochenschrift, 2016, 128, 679-690.	1.9	39
72	Cholemic nephropathy – Historical notes and novel perspectives. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1356-1366.	3.8	39

#	Article	IF	CITATIONS
73	The role of osteopontin and tumor necrosis factor alpha receptor-1 in xenobiotic-induced cholangitis and biliary fibrosis in mice. Laboratory Investigation, 2010, 90, 844-852.	3.7	38
74	Genetic background effects of keratin 8 and 18 in a DDC-induced hepatotoxicity and Mallory-Denk body formation mouse model. Laboratory Investigation, 2012, 92, 857-867.	3.7	38
75	Potential of <i>nor</i> -Ursodeoxycholic Acid in Cholestatic and Metabolic Disorders. Digestive Diseases, 2015, 33, 433-439.	1.9	38
76	Chronic cholestatic liver diseases: Clues from histopathology for pathogenesis. Molecular Aspects of Medicine, 2014, 37, 35-56.	6.4	37
77	Conjugation is essential for the anticholestatic effect of NorUrsodeoxycholic acid in taurolithocholic acid-induced cholestasis in rat liver. Hepatology, 2010, 52, 1758-1768.	7.3	36
78	Phosphatidylinositol 3-kinase-dependent signaling modulates taurochenodeoxycholic acid-induced liver injury and cholestasis in perfused rat livers. American Journal of Physiology - Renal Physiology, 2005, 289, G88-G94.	3.4	34
79	Separation of low and high grade colon and rectum carcinoma by eukaryotic translation initiation factors 1, 5 and 6. Oncotarget, 2017, 8, 101224-101243.	1.8	34
80	Pathophysiological Role of Poly(ADP-Ribose) Polymerase (PARP) Activation during Acetaminophen-Induced Liver Cell Necrosis in Mice. Toxicological Sciences, 2005, 84, 201-208.	3.1	32
81	Vitamin D modulates biliary fibrosis in ABCB4-deficient mice. Hepatology International, 2014, 8, 443-452.	4.2	32
82	Impact of experimental colitis on hepatobiliary transporter expression and bile duct injury in mice. Liver International, 2009, 29, 1316-1325.	3.9	31
83	Primary sclerosing cholangitisthe arteriosclerosis of the bile duct?. Lipids in Health and Disease, 2007, 6, 3.	3.0	30
84	The chronic kidney disease epidemiology collaboration equation combining creatinine and cystatin C accurately assesses renal function in patients with cirrhosis. BMC Nephrology, 2015, 16, 196.	1.8	30
85	New Insights into Autoimmune Cholangitis through Animal Models. Digestive Diseases, 2010, 28, 99-104.	1.9	28
86	Autophagy induced by exogenous bile acids is therapeutic in a model of α-1-AT deficiency liver disease. American Journal of Physiology - Renal Physiology, 2016, 311, G156-G165.	3.4	27
87	To salt or not to salt? $\hat{a}\in$ "That is the question in cirrhosis. Liver International, 2018, 38, 1148-1159.	3.9	27
88	Lysyl oxidase-like protein 2 (LOXL2) modulates barrier function in cholangiocytes in cholestasis. Journal of Hepatology, 2018, 69, 368-377.	3.7	27
89	NorUDCA promotes degradation of α1-antitrypsin mutant Z protein by inducing autophagy through AMPK/ULK1 pathway. PLoS ONE, 2018, 13, e0200897.	2.5	27
90	Nitric oxide-dependent and -independent vascular hyporeactivity in mesenteric arteries of portal hypertensive rats. British Journal of Pharmacology, 1997, 121, 1031-1037.	5.4	26

#	Article	IF	CITATIONS
91	Primary Sclerosing Cholangitis: New Approaches to Diagnosis, Surveillance and Treatment. Digestive Diseases, 2012, 30, 39-47.	1.9	26
92	Evolving concepts in primary sclerosing cholangitis. Liver International, 2012, 32, 352-369.	3.9	25
93	Metabolic disease and ABHD6 alter the circulating bis(monoacylglycerol)phosphate profile in mice and humans. Journal of Lipid Research, 2019, 60, 1020-1031.	4.2	25
94	Changes in the Intestinal Microbiome during a Multispecies Probiotic Intervention in Compensated Cirrhosis. Nutrients, 2020, 12, 1874.	4.1	25
95	Targeting Nuclear Bile Acid Receptors for Liver Disease. Digestive Diseases, 2011, 29, 98-102.	1.9	24
96	PDX-1/Hes-1 interactions determine cholangiocyte proliferative response to injury in rodents: Possible implications for sclerosing cholangitis. Journal of Hepatology, 2013, 58, 750-756.	3.7	24
97	Loss of keratin 19 favours the development of cholestatic liver disease through decreased ductular reaction. Journal of Pathology, 2015, 237, 343-354.	4.5	24
98	Treatment of patients with chronic hepatitis C not responding to interferon with high-dose interferon alpha with or without ribavirin: final results of a prospective randomized trial. European Journal of Gastroenterology and Hepatology, 2001, 13, 699-705.	1.6	23
99	Role of hepatic phospholipids in development of liver injury in <i>Mdr2</i> (<i>Abcb4</i>) knockout mice. Liver International, 2008, 28, 948-958.	3.9	23
100	Successful conservative management of acute hepatic failure following exertional heatstroke. European Journal of Gastroenterology and Hepatology, 2003, 15, 1135-1139.	1.6	21
101	Serum alkaline phosphatase levels accurately reflect cholestasis in mice. Hepatology, 2015, 62, 981-983.	7.3	20
102	Alterations of Canalicular ATP-Binding Cassette Transporter Expression in Drug-Induced Liver Injury. Digestion, 2014, 90, 81-88.	2.3	19
103	Cholemic Nephropathy Reloaded. Seminars in Liver Disease, 2020, 40, 091-100.	3.6	19
104	Non-invasive markers of liver fibrosis and outcome in large vessel occlusion stroke. Therapeutic Advances in Neurological Disorders, 2021, 14, 175628642110372.	3.5	19
105	Bile acids and glucocorticoid metabolism in health and disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 243-251.	3.8	18
106	Vasopressin reverses mesenteric hyperemia and vasoconstrictor hyporesponsiveness in anesthetized portal hypertensive rats. Hepatology, 1998, 28, 646-654.	7.3	17
107	Regulation of autophagy by bile acids and in cholestasis - CholestoPHAGY or CholeSTOPagy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166017.	3.8	16
108	Acute Liver Failure after Ingestion of Fried Rice Balls: A Case Series of Bacillus cereus Food Poisonings. Toxins, 2022, 14, 12.	3.4	16

#	Article	IF	CITATIONS
109	Is This the Last Requiem for Simtuzumab?. Hepatology, 2019, 69, 476-479.	7.3	15
110	Imbalance of pro―and antifibrogenic genes and bile duct injury in murine <i>Schistosoma mansoni</i> infection–induced liver fibrosis. Tropical Medicine and International Health, 2009, 14, 1418-1425.	2.3	13
111	When lightning strikes twice: The plot thickens for a dual role of the anion exchanger 2 (AE2/SLC4A2) in the pathogenesis and treatment of primary biliary cirrhosis. Journal of Hepatology, 2009, 50, 633-635.	3.7	13
112	Bile Acids as Modulators of Gut Microbiota Linking Dietary Habits and Inflammatory Bowel Disease: A Potentially Dangerous Liaison. Gastroenterology, 2013, 144, 844-846.	1.3	13
113	Calnexin Depletion by Endoplasmic Reticulum Stress During Cholestasis Inhibits the Na+â€Taurocholate Cotransporting Polypeptide. Hepatology Communications, 2018, 2, 1550-1566.	4.3	13
114	Biliary Obstruction Due to Duodenojejunal Intussusception in Peutz-Jeghers Syndrome. Journal of Clinical Gastroenterology, 1996, 23, 220-223.	2.2	13
115	Hepatobiliary Transporter Expression in Intercellular Adhesion Molecule 1 Knockout and Fas Receptor-Deficient Mice after Common Bile Duct Ligation Is Independent of the Degree of Inflammation and Oxidative Stress. Drug Metabolism and Disposition, 2007, 35, 1694-1699.	3.3	12
116	Bile acids increase steroidogenesis in cholemic mice and induce cortisol secretion in adrenocortical H295R cells via S1 <scp>PR</scp> 2, <scp>ERK</scp> and <scp>SF</scp> â€1. Liver International, 2019, 39, 2112-2123.	3.9	12
117	Pharmacologic IL-6Rα inhibition in cholangiocarcinoma promotes cancer cell growth and survival. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 308-321.	3.8	11
118	The role of the hepatocyte cytokeratin network in bile formation and resistance to bile acid challenge and cholestasis in mice. Hepatology, 2009, 50, 893-899.	7.3	10
119	Niacin-Associated Acute Hepatotoxicity Leading to Emergency Liver Transplantation. American Journal of Gastroenterology, 2017, 112, 1345-1346.	0.4	10
120	Genetic loss of the muscarinic M ₃ receptor markedly alters bile formation and cholestatic liver injury in mice. Hepatology Research, 2018, 48, E68-E77.	3.4	10
121	A novel score predicts mortality after transjugular intrahepatic portosystemic shunt: MOTS ― Modified TIPS Score. Liver International, 2022, 42, 1849-1860.	3.9	10
122	NOD2 gene variants confer risk for secondary sclerosing cholangitis in critically ill patients. Scientific Reports, 2017, 7, 7026.	3.3	9
123	Ursodeoxycholic Acid for Treatment of Fatty Liver Disease and Dyslipidemia in Morbidly Obese Patients. Digestive Diseases, 2011, 29, 117-118.	1.9	8
124	Impaired Bile Acid Metabolism and Gut Dysbiosis in Mice Lacking Lysosomal Acid Lipase. Cells, 2021, 10, 2619.	4.1	8
125	Successful steroid treatment of idiopathic thrombocytopenic purpura after orthotopic liver transplantation for primary biliary cirrhosis. American Journal of Gastroenterology, 1998, 93, 1985-1986.	0.4	7
126	Thioguanine-Induced Symptomatic Thrombocytopenia. American Journal of Gastroenterology, 2004, 99, 1195-1195.	0.4	7

#	Article	IF	CITATIONS
127	Combined Rifampicin and Ursodeoxycholic Acid Treatment Does Not Amplify Rifampicin Effects on Hepatic Detoxification and Transport Systems in Humans. Digestion, 2012, 86, 244-249.	2.3	6
128	Hepatobiliary transporter expression and postâ€operative jaundice in patients undergoing partial hepatectomy. Liver International, 2012, 32, 119-127.	3.9	6
129	Molecular pathogenesis of chronic cholestatic liver disease: Impact on novel therapeutic approaches. Molecular Aspects of Medicine, 2014, 37, 1-2.	6.4	6
130	Future Medical Treatment of PSC. Current Hepatology Reports, 2019, 18, 96-106.	0.9	6
131	Sulphatation Does Not Appear to Be a Protective Mechanism to Prevent Oxysterol Accumulation in Humans and Mice. PLoS ONE, 2013, 8, e68031.	2.5	5
132	Time to say goodbye to the drug or the model? – Why do drugs fail to live up to their promise in bile duct ligated mice?. Journal of Hepatology, 2014, 60, 12-15.	3.7	5
133	Time for the dawn of multimodal therapies and the dusk for monoâ€therapeutic trials for cholestatic liver diseases?. Liver International, 2018, 38, 991-994.	3.9	5
134	A novel way to avoid reoperation for biliary strictures after liver transplantation: cholangioscopy-assisted guidewire placement. Endoscopy, 2019, 51, E314-E316.	1.8	5
135	Secondary Sclerosing Cholangitis in Critically III Patients Alters the Gut–Liver Axis: A Case Control Study. Nutrients, 2020, 12, 2728.	4.1	5
136	Secondary (iso)BAs cooperate with endogenous ligands to activate FXR under physiological and pathological conditions. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166153.	3.8	5
137	Liver Fibrosisâ€4 index indicates atrial fibrillation in acute ischemic stroke. European Journal of Neurology, 2022, 29, 2283-2288.	3.3	5
138	Clinical–Pathological Conference Series from the Medical University of Graz. Wiener Klinische Wochenschrift, 2015, 127, 151-159.	1.9	4
139	Chronic gastric ulcer disease complicating selective internal radiation therapy (SIRT) in a patient with cholangiocellular carcinoma. Zeitschrift Fur Gastroenterologie, 2019, 57, 1304-1308.	0.5	4
140	Animal Models of Cholestasis. , 2013, , 331-349.		3
141	Histological demonstration of BSEP/ABCB11 inhibition in transient neonatal cholestasis: a case report. BMC Pediatrics, 2020, 20, 340.	1.7	3
142	Bile Acids Are Important Contributors to AKI Associated with Liver Disease: PRO. Kidney360, 2022, 3, 17-20.	2.1	3
143	Hypercortisolism in patients with cholestasis is associated with disease severity. BMC Gastroenterology, 2021, 21, 460.	2.0	3
144	Mycosis as a Cause of Secondary Sclerosing Cholangitis Requiring Liver Retransplantation. Transplantation, 2011, 91, e14-e16.	1.0	2

#	Article	IF	CITATIONS
145	Bad memories from the gut may cause nightmares for the bile ducts. Journal of Hepatology, 2017, 66, 5-7.	3.7	2
146	Role of nuclear bile salt receptors Fxr and Pxr in mediating adaptive hepatobiliary transporter response to cholic acid (CA) in mouse liver. Gastroenterology, 2003, 124, A59.	1.3	1
147	Pleuro-Pulmonary Nocardiosis as Opportunistic Infection in a Patient with Chronic Hepatitis C under Combination Treatment with Pegylated Interferon, Ribavirin, and Boceprevir. Case Reports in Hepatology, 2013, 2013, 1-4.	0.7	1
148	Reply. Hepatology, 2016, 63, 346-347.	7.3	1
149	Lifeâ€threatening sinusoidal obstruction syndrome after highâ€dose chemotherapy linked to compound heterozygous mutations in <i>ABCB11</i> . Pediatric Blood and Cancer, 2017, 64, e26666.	1.5	1
150	Preface - Animal models in liver disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 867-868.	3.8	1
151	Gut pathobionts as triggers for liver diseases. Nature Microbiology, 2019, 4, 380-381.	13.3	1
152	Case of nasogastric tube dysfunction. Gut, 2019, 68, 206-262.	12.1	1
153	Acquired Alterations of Transporter Expression and Function in Cholestasis. , 2004, , 266-288.		1
154	Emergency Double-Stenting and Surgery for the Successful Management of Massive Upper Gastrointestinal Bleeding Caused by Mycotic Aortic Aneurysm. Clinical Gastroenterology and Hepatology, 2015, 13, e171-e172.	4.4	0
155	Secretin and cholestasis, two sides of a coin. Hepatology, 2016, 64, 714-716.	7.3	0
156	Animal Models of Biliary Disease: Current Approaches and Limitations. , 2017, , 63-84.		0
157	Clinical-Pathological Conference Series from the Medical University of Graz. Wiener Klinische Wochenschrift, 2018, 130, 545-556.	1.9	0
158	Clinical-Pathological Conference Series from the Medical University of Graz. Wiener Klinische Wochenschrift, 2020, 132, 551-559.	1.9	0
159	Clinical-Pathological Conference Series from the Medical University of Graz. Wiener Klinische Wochenschrift, 2021, 133, 515-522.	1.9	0
160	HepatobiliÃ r e Funktionsstörungen und Leberversagen. , 2011, , 567-578.		0
161	Bacteria as key players in primary sclerosing cholangitis?. Gut, 0, , gutjnl-2022-327876.	12.1	0