
Alessandra Zingoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7615232/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Opsonin-Deficient Nucleoproteic Corona Endows UnPEGylated Liposomes with Stealth Properties <i>In Vivo</i> . ACS Nano, 2022, 16, 2088-2100.	14.6	28
2	Impact on NK cell functions of acute versus chronic exposure to extracellular vesicleâ€associated MICA: Dual role in cancer immunosurveillance. Journal of Extracellular Vesicles, 2022, 11, e12176.	12.2	22
3	PIGR-enriched circulating vesicles contributes to hepatocellular carcinoma aggressiveness. Journal of Hepatology, 2022, 76, 768-770.	3.7	1
4	When killers become thieves: Trogocytosed PD-1 inhibits NK cells in cancer. Science Advances, 2022, 8, eabj3286.	10.3	35
5	Largeâ^'Scale Profiling of Extracellular Vesicles Identified miRâ^'625â^'5p as a Novel Biomarker of Immunotherapy Response in Advanced Nonâ^'Smallâ^'Cell Lung Cancer Patients. Cancers, 2022, 14, 2435.	3.7	15
6	<i>In vitro</i> and <i>ex vivo</i> nano-enabled immunomodulation by the protein corona. Nanoscale, 2022, 14, 10531-10539.	5.6	3
7	The Possible Role of Sex As an Important Factor in Development and Administration of Lipid Nanomedicine-Based COVID-19 Vaccine. Molecular Pharmaceutics, 2021, 18, 2448-2453.	4.6	11
8	Cereblon regulates NK cell cytotoxicity and migration via Rac1 activation. European Journal of Immunology, 2021, 51, 2607-2617.	2.9	5
9	Immunomodulatory effect of NEDD8-activating enzyme inhibition in Multiple Myeloma: upregulation of NKG2D ligands and sensitization to Natural Killer cell recognition. Cell Death and Disease, 2021, 12, 836.	6.3	13
10	Immune complexes exposed on mast cellâ€derived nanovesicles amplify allergic inflammation. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1260-1263.	5.7	18
11	Cancer extracellular vesicles as novel regulators of NK cell response. Cytokine and Growth Factor Reviews, 2020, 51, 19-26.	7.2	13
12	SAMHD1 phosphorylation and cytoplasmic relocalization after human cytomegalovirus infection limits its antiviral activity. PLoS Pathogens, 2020, 16, e1008855.	4.7	12
13	Bone Marrow Stromal Cell-Derived IL-8 Upregulates PVR Expression on Multiple Myeloma Cells via NF-kB Transcription Factor. Cancers, 2020, 12, 440.	3.7	21
14	Tuning the Orchestra: HCMV vs. Innate Immunity. Frontiers in Microbiology, 2020, 11, 661.	3.5	29
15	NKG2D Ligand Shedding in Response to Stress: Role of ADAM10. Frontiers in Immunology, 2020, 11, 447.	4.8	30
16	Impact of the protein corona on nanomaterial immune response and targeting ability. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1615.	6.1	44
17	Interplay of protein corona and immune cells controls blood residency of liposomes. Nature Communications, 2019, 10, 3686.	12.8	160
18	Post-translational Mechanisms Regulating NK Cell Activating Receptors and Their Ligands in Cancer: Potential Targets for Therapeutic Intervention. Frontiers in Immunology, 2019, 10, 2557.	4.8	20

#	Article	IF	CITATIONS
19	An optimized retinoic acid-inducible gene I agonist M8 induces immunogenic cell death markers in human cancer cells and dendritic cell activation. Cancer Immunology, Immunotherapy, 2019, 68, 1479-1492.	4.2	22
20	Cancer Exosomes as Conveyors of Stress-Induced Molecules: New Players in the Modulation of NK Cell Response. International Journal of Molecular Sciences, 2019, 20, 611.	4.1	34
21	Activation of liver X receptor upâ€regulates the expression of the NKG2D ligands MICA and MICB in multiple myeloma through different molecular mechanisms. FASEB Journal, 2019, 33, 9489-9504.	0.5	19
22	The homeobox transcription factor MEIS2 is a regulator of cancer cell survival and IMiDs activity in Multiple Myeloma: modulation by Bromodomain and Extra-Terminal (BET) protein inhibitors. Cell Death and Disease, 2019, 10, 324.	6.3	11
23	Senescent cells: Living or dying is a matter of NK cells. Journal of Leukocyte Biology, 2019, 105, 1275-1283.	3.3	69
24	Drug-Induced Senescent Multiple Myeloma Cells Elicit NK Cell Proliferation by Direct or Exosome-Mediated IL15 <i>Trans</i> -Presentation. Cancer Immunology Research, 2018, 6, 860-869.	3.4	59
25	Hepatitis C virus directâ€acting antivirals therapy impacts on extracellular vesicles microRNAs content and on their immunomodulating properties. Liver International, 2018, 38, 1741-1750.	3.9	35
26	Key Role of the CD56lowCD16low Natural Killer Cell Subset in the Recognition and Killing of Multiple Myeloma Cells. Cancers, 2018, 10, 473.	3.7	29
27	Translating the anti-myeloma activity of Natural Killer cells into clinical application. Cancer Treatment Reviews, 2018, 70, 255-264.	7.7	28
28	NKG2D and Its Ligands: "One for All, All for One― Frontiers in Immunology, 2018, 9, 476.	4.8	165
29	MICA-129 Dimorphism and Soluble MICA Are Associated With the Progression of Multiple Myeloma. Frontiers in Immunology, 2018, 9, 926.	4.8	33
30	Exosome-delivered microRNAs promote IFN-Î \pm secretion by human plasmacytoid DCs via TLR7. JCI Insight, 2018, 3, .	5.0	96
31	Genotoxic stress modulates the release of exosomes from multiple myeloma cells capable of activating NK cell cytokine production: Role of HSP70/TLR2/NF-kB axis. Oncolmmunology, 2017, 6, e1279372.	4.6	100
32	p38 MAPK differentially controls NK activating ligands at transcriptional and post-transcriptional level on multiple myeloma cells. Oncolmmunology, 2017, 6, e1264564.	4.6	29
33	High expression levels of IP10/CXCL10 are associated with modulation of the natural killer cell compartment in multiple myeloma. Leukemia and Lymphoma, 2017, 58, 2493-2496.	1.3	6
34	Natural Killer Cell Response to Chemotherapy-Stressed Cancer Cells: Role in Tumor Immunosurveillance. Frontiers in Immunology, 2017, 8, 1194.	4.8	100
35	Targeting NKG2D and NKp30 Ligands Shedding to Improve NK Cell-Based Immunotherapy. Critical Reviews in Immunology, 2016, 36, 445-460.	0.5	27
36	Inhibition of bromodomain and extra-terminal (BET) proteins increases NKG2D ligand MICA expression and sensitivity to NK cell-mediated cytotoxicity in multiple myeloma cells: role of cMYC-IRF4-miR-125b interplay. Journal of Hematology and Oncology, 2016, 9, 134.	17.0	72

Alessandra Zingoni

#	Article	IF	CITATIONS
37	Distinct Roles for Human Cytomegalovirus Immediate Early Proteins IE1 and IE2 in the Transcriptional Regulation of MICA and PVR/CD155 Expression. Journal of Immunology, 2016, 197, 4066-4078.	0.8	28
38	NK cell effector functions in a Chédiak-Higashi patient undergoing cord blood transplantation: Effects of in vitro treatment with IL-2. Immunology Letters, 2016, 180, 46-53.	2.5	7
39	NKG2D and DNAM-1 Ligands: Molecular Targets for NK Cell-Mediated Immunotherapeutic Intervention in Multiple Myeloma. BioMed Research International, 2015, 2015, 1-9.	1.9	61
40	Tumor-associated and immunochemotherapy-dependent long-term alterations of the peripheral blood NK cell compartment in DLBCL patients. Oncolmmunology, 2015, 4, e990773.	4.6	27
41	Nitric oxide donors increase PVR/CD155 DNAM-1 ligand expression in multiple myeloma cells: role of DNA damage response activation. BMC Cancer, 2015, 15, 17.	2.6	54
42	Genotoxic Stress Induces Senescence-Associated ADAM10-Dependent Release of NKG2D MIC Ligands in Multiple Myeloma Cells. Journal of Immunology, 2015, 195, 736-748.	0.8	85
43	Multiple Myeloma Impairs Bone Marrow Localization of Effector Natural Killer Cells by Altering the Chemokine Microenvironment. Cancer Research, 2015, 75, 4766-4777.	0.9	86
44	The IMiDs targets IKZF-1/3 and IRF4 as novel negative regulators of NK cell-activating ligands expression in multiple myeloma. Oncotarget, 2015, 6, 23609-23630.	1.8	78
45	The DNA Damage Response: A Common Pathway in the Regulation of NKG2D and DNAM-1 Ligand Expression in Normal, Infected, and Cancer Cells. Frontiers in Immunology, 2014, 4, 508.	4.8	110
46	câ€Cbl regulates MICA―but not ULBP2â€induced NKG2D downâ€modulation in human NK cells. European Journal of Immunology, 2014, 44, 2761-2770.	2.9	35
47	Inhibition of Glycogen Synthase Kinase-3 Increases NKG2D Ligand MICA Expression and Sensitivity to NK Cell–Mediated Cytotoxicity in Multiple Myeloma Cells: Role of STAT3. Journal of Immunology, 2013, 190, 6662-6672.	0.8	64
48	NKG2D and DNAM-1 activating receptors and their ligands in NK-T cell interactions: role in the NK cell-mediated negative regulation of T cell responses. Frontiers in Immunology, 2012, 3, 408.	4.8	53
49	Human Leukocyte Antigen E Contributes to Protect Tumor Cells from Lysis by Natural Killer Cells. Neoplasia, 2011, 13, 822-IN14.	5.3	73
50	DNAM-1 ligand expression on Ag-stimulated T lymphocytes is mediated by ROS-dependent activation of DNA-damage response: relevance for NK–T cell interaction. Blood, 2011, 117, 4778-4786.	1.4	118
51	Modulation of T Cell-Mediated Immune Responses by Natural Killer Cells. , 2010, , 315-327.		4
52	ATM-ATR–dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood, 2009, 113, 3503-3511.	1.4	384
53	Detuning CD8+ T lymphocytes by down-regulation of the activating receptor NKG2D: role of NKG2D ligands released by activated T cells. Blood, 2009, 113, 2955-2964.	1.4	66
54	Human immunodeficiency virus 1 Nef protein downmodulates the ligands of the activating receptor NKG2D and inhibits natural killer cell-mediated cytotoxicity. Journal of General Virology, 2007, 88, 242-250.	2.9	161

Alessandra Zingoni

#	Article	IF	CITATIONS
55	Antigen-activated human T lymphocytes express cell-surface NKG2D ligands via an ATM/ATR-dependent mechanism and become susceptible to autologous NK- cell lysis. Blood, 2007, 110, 606-615.	1.4	257
56	Natural Killer (NK) Cells from Killers to Regulators: Distinct Features Between Peripheral Blood and Decidual NK Cells. American Journal of Reproductive Immunology, 2007, 58, 280-288.	1.2	53
57	Recognition of a carbohydrate xenoepitope by human NKRP1A (CD161). Xenotransplantation, 2006, 13, 440-446.	2.8	32
58	High-efficient lentiviral vector-mediated gene transfer into primary human NK cells. Experimental Hematology, 2006, 34, 1344-1352.	0.4	39
59	Engagement of NKG2D by Cognate Ligand or Antibody Alone Is Insufficient to Mediate Costimulation of Human and Mouse CD8+ T Cells. Journal of Immunology, 2005, 174, 1922-1931.	0.8	96
60	NK cell regulation of T cell-mediated responses. Molecular Immunology, 2005, 42, 451-454.	2.2	83
61	Cross-Talk between Activated Human NK Cells and CD4+ T Cells via OX40-OX40 Ligand Interactions. Journal of Immunology, 2004, 173, 3716-3724.	0.8	238
62	Src-Dependent Syk Activation Controls CD69-Mediated Signaling and Function on Human NK Cells. Journal of Immunology, 2002, 169, 68-74.	0.8	45
63	Aberrant in Vivo T Helper Type 2 Cell Response and Impaired Eosinophil Recruitment in Cc Chemokine Recentor 8 Knochout Mice, Journal of Experimental Medicine, 2001, 193, 573-584	8.5	222