
Caterina Missero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7614913/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Translational implications of Th17-skewed inflammation due to genetic deficiency of a cadherin stress sensor. Journal of Clinical Investigation, 2022, 132, .	8.2	24
2	Isoform-Specific Roles of Mutant p63 in Human Diseases. Cancers, 2021, 13, 536.	3.7	15
3	Dysregulation of lipid metabolism and pathological inflammation in patients with COVID-19. Scientific Reports, 2021, 11, 2941.	3.3	102
4	Flash forward genetics: new twists in transcription across evolutionary boundaries. EMBO Reports, 2021, 22, e52152.	4.5	1
5	Interaction of the NRF2 and p63 transcription factors promotes keratinocyte proliferation in the epidermis. Nucleic Acids Research, 2021, 49, 3748-3763.	14.5	15
6	A TP63 Mutation Causes Prominent Alopecia with Mild Ectodermal Dysplasia. Journal of Investigative Dermatology, 2020, 140, 1103-1106.e4.	0.7	2
7	Improvement of epidermal covering on AEC patients with severe skin erosions by PRIMA-1MET/APR-246. Cell Death and Disease, 2020, 11, 30.	6.3	12
8	TBX1 and Basal Cell Carcinoma: Expression and Interactions with Gli2 and Dvl2 Signaling. International Journal of Molecular Sciences, 2020, 21, 607.	4.1	16
9	Positive selection in Europeans and East-Asians at the ABCA12 gene. Scientific Reports, 2019, 9, 4843.	3.3	1
10	Thyroid hormone induces progression and invasiveness of squamous cell carcinomas by promoting a ZEB-1/E-cadherin switch. Nature Communications, 2019, 10, 5410.	12.8	41
11	Isolation and Enrichment of Newborn and Adult Skin Stem Cells of the Interfollicular Epidermis. Methods in Molecular Biology, 2018, 1879, 119-132.	0.9	3
12	Protein aggregation of the p63 transcription factor underlies severe skin fragility in AEC syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E906-E915.	7.1	26
13	Functional and Mechanistic Insights into the Pathogenesis of P63-Associated Disorders. Journal of Investigative Dermatology Symposium Proceedings, 2018, 19, S98-S100.	0.8	3
14	The protein kinase p38α destabilizes p63 to limit epidermal stem cell frequency and tumorigenic potential. Science Signaling, 2018, 11, .	3.6	7
15	p63 in Squamous Cell Carcinoma ofÂthe Skin: More Than a Stem Cell/Progenitor Marker. Journal of Investigative Dermatology, 2017, 137, 280-281.	0.7	17
16	Research Techniques Made Simple: Identification and Characterization of Long Noncoding RNA in Dermatological Research. Journal of Investigative Dermatology, 2017, 137, e21-e26.	0.7	10
17	p63 exerts spatio-temporal control of palatal epithelial cell fate to prevent cleft palate. PLoS Genetics, 2017, 13, e1006828.	3.5	34
18	Research Techniques Made Simple: Skin Carcinogenesis Models: Xenotransplantation Techniques. Journal of Investigative Dermatology, 2016, 136, e13-e17.	0.7	4

CATERINA MISSERO

#	Article	IF	CITATIONS
19	The genetic evolution of skin squamous cell carcinoma: tumor suppressor identity matters. Experimental Dermatology, 2016, 25, 863-864.	2.9	6
20	Reciprocal interplay between thyroid hormone and microRNA-21 regulates hedgehog pathway–driven skin tumorigenesis. Journal of Clinical Investigation, 2016, 126, 2308-2320.	8.2	44
21	A composite enhancer regulates p63 gene expression in epidermal morphogenesis and in keratinocyte differentiation by multiple mechanisms. Nucleic Acids Research, 2015, 43, 862-874.	14.5	30
22	Epidermal cell junctions and their regulation by p63 in health and disease. Cell and Tissue Research, 2015, 360, 513-528.	2.9	9
23	p63â€dependent and independent mechanisms of nectinâ€1 and nectinâ€4 regulation in the epidermis. Experimental Dermatology, 2015, 24, 114-119.	2.9	25
24	Crosstalk among p53 family members in cutaneous carcinoma. Experimental Dermatology, 2014, 23, 143-146.	2.9	30
25	The Desmosomal Protein Desmoglein 1 Aids Recovery of Epidermal Differentiation after Acute UV Light Exposure. Journal of Investigative Dermatology, 2014, 134, 2154-2162.	0.7	35
26	The Sonic Hedgehog-Induced Type 3 Deiodinase Facilitates Tumorigenesis of Basal Cell Carcinoma by Reducing Gli2 Inactivation. Endocrinology, 2014, 155, 2077-2088.	2.8	29
27	Human skin-derived keratinocytes and fibroblasts co-cultured on 3D poly ε-caprolactone scaffold support <i>in vitro</i> HSC differentiation into T-lineage committed cells. International Immunology, 2013, 25, 703-714.	4.0	15
28	Insulin/IGF-1 Controls Epidermal Morphogenesis via Regulation of FoxO-Mediated p63 Inhibition. Developmental Cell, 2013, 26, 176-187.	7.0	41
29	An Intimate Relationship between Thyroid Hormone and Skin: Regulation of Gene Expression. Frontiers in Endocrinology, 2013, 4, 104.	3.5	39
30	p63 control of desmosome gene expression and adhesion is compromised in AEC syndrome. Human Molecular Genetics, 2013, 22, 531-543.	2.9	65
31	Mutant p63 causes defective expansion of ectodermal progenitor cells and impaired FGF signalling in AEC syndrome. EMBO Molecular Medicine, 2012, 4, 192-205.	6.9	68
32	Exome Sequence Identifies RIPK4 as the Bartsocas- Papas Syndrome Locus. American Journal of Human Genetics, 2012, 90, 69-75.	6.2	82
33	TAp63 Is Important for Cardiac Differentiation of Embryonic Stem Cells and Heart Development. Stem Cells, 2011, 29, 1672-1683.	3.2	49
34	p63 regulates <i>Satb1</i> to control tissue-specific chromatin remodeling during development of the epidermis. Journal of Cell Biology, 2011, 194, 825-839.	5.2	160
35	Transcriptional Repression of miR-34 Family Contributes to p63-Mediated Cell Cycle Progression in Epidermal Cells. Journal of Investigative Dermatology, 2010, 130, 1249-1257.	0.7	111
36	Embryonic stem cells as an ectodermal cellular model of human p63-related dysplasia syndromes. Biochemical and Biophysical Research Communications, 2010, 395, 131-135.	2.1	14

CATERINA MISSERO

#	Article	IF	CITATIONS
37	p63 Suppresses Non-epidermal Lineage Markers in a Bone Morphogenetic Protein-dependent Manner via Repression of Smad7. Journal of Biological Chemistry, 2009, 284, 30574-30582.	3.4	35
38	Tprg, a Gene Predominantly Expressed in Skin, Is a Direct Target of the Transcription Factor p63. Journal of Investigative Dermatology, 2008, 128, 1676-1685.	0.7	34
39	Direct targets of the TRP63 transcription factor revealed by a combination of gene expression profiling and reverse engineering. Genome Research, 2008, 18, 939-948.	5.5	72
40	Sonic hedgehog-induced type 3 deiodinase blocks thyroid hormone action enhancing proliferation of normal and malignant keratinocytes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14466-14471.	7.1	149
41	A Multicassette Gateway Vector Set for High Throughput and Comparative Analyses in Ciona and Vertebrate Embryos. PLoS ONE, 2007, 2, e916.	2.5	113
42	Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes and Development, 2006, 20, 1028-1042.	5.9	325
43	An Autoregulatory Loop Directs the Tissue-Specific Expression of p63 through a Long-Range Evolutionarily Conserved Enhancer. Molecular and Cellular Biology, 2006, 26, 3308-3318.	2.3	73
44	Glucocorticoid-induced Tumor Necrosis Factor Receptor Is a p21 Transcriptional Target Conferring Resistance of Keratinocytes to UV Light-induced Apoptosis. Journal of Biological Chemistry, 2005, 280, 37725-37731.	3.4	29
45	Requirement of the forkhead gene Foxe1, a target of sonic hedgehog signaling, in hair follicle morphogenesis. Human Molecular Genetics, 2004, 13, 2595-2606.	2.9	53
46	Ectodysplasin regulates pattern formation in the mammalian hair coat. Genesis, 2003, 37, 30-37.	1.6	30
47	Identification, characterization and expression analysis of a new fibrillar collagen gene, COL27A1. Matrix Biology, 2003, 22, 3-14.	3.6	112
48	The Molecular Basis of Skin Carcinogenesis. , 2002, , 407-425.		3
49	Immediate early genes induced by H-Ras in thyroid cells. Oncogene, 2001, 20, 2281-2290.	5.9	5
50	The DNA Glycosylase T:G Mismatch-specific Thymine DNA Glycosylase Represses Thyroid Transcription Factor-1-activated Transcription. Journal of Biological Chemistry, 2001, 276, 33569-33575.	3.4	73
51	Multiple Ras Downstream Pathways Mediate Functional Repression of the Homeobox Gene Product TTF-1. Molecular and Cellular Biology, 2000, 20, 2783-2793.	2.3	55
52	Regulation of parathyroid hormone-related protein gene expression in murine keratinocytes by E1A isoforms: a role for basal promoter and Ets-1 site. Molecular and Cellular Endocrinology, 1999, 156, 13-23.	3.2	17
53	Concomitant activation of MEK-1 and Rac-1 increases the proliferative potential of thyroid epithelial cells, without affecting their differentiation. Oncogene, 1998, 17, 2047-2057.	5.9	32
54	PAX8 mutations associated with congenital hypothyroidism caused by thyroid dysgenesis. Nature Genetics, 1998, 19, 83-86.	21.4	446

CATERINA MISSERO

#	Article	IF	CITATIONS
55	Molecular events involved in differentiation of thyroid follicular cells. Molecular and Cellular Endocrinology, 1998, 140, 37-43.	3.2	58
56	The absence of p21Cip1/WAF1 alters keratinocyte growth and differentiation and promotes ras-tumor progression Genes and Development, 1996, 10, 3065-3075.	5.9	289
57	Involvement of the cell-cycle inhibitor Cip1/WAF1 and the E1A-associated p300 protein in terminal differentiation Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 5451-5455.	7.1	337
58	fyn tyrosine kinase is involved in keratinocyte differentiation control Genes and Development, 1995, 9, 2279-2291.	5.9	107
59	Different levels of v-Ha-ras p21 expression in primary keratinocytes transformed with harvey sarcoma virus correlate with benign versus malignant behavior. Molecular Carcinogenesis, 1993, 7, 21-25.	2.7	14
60	Pore-forming and haemolytic properties of the Gardnerella vaginalis cytoiysin. Molecular Microbiology, 1993, 9, 1143-1155.	2.5	54
61	Counteracting Effects of E1a Transformation on cAMP Growth Inhibition. Experimental Cell Research, 1993, 207, 57-61.	2.6	14
62	Skin-specific expression of a truncated E1a oncoprotein binding to p105-Rb leads to abnormal hair follicle maturation without increased epidermal proliferation Journal of Cell Biology, 1993, 121, 1109-1120.	5.2	33
63	The E1a gene prevents inhibition of keratinocyte proliferation by dexamethasone. Experimental Cell Research, 1992, 203, 285-288.	2.6	6
64	Induction of transforming growth factor beta 1 resistance by the E1A oncogene requires binding to a specific set of cellular proteins Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 3489-3493.	7.1	62
65	Escape from transforming growth factor beta control and oncogene cooperation in skin tumor development Proceedings of the National Academy of Sciences of the United States of America, 1991, 88. 9613-9617.	7.1	64