David A Foster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7612595/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alcohol Consumption Raises HDL Cholesterol Levels by Increasing the Transport Rate of Apolipoproteins A-I and A-II. Circulation, 2000, 102, 2347-2352.	1.6	264
2	Phospholipase D in cell proliferation and cancer. Molecular Cancer Research, 2003, 1, 789-800.	3.4	233
3	The enigmatic protein kinase Cδ: complex roles in cell proliferation and survival. FASEB Journal, 2004, 18, 627-636.	0.5	188
4	Phosphatidic acid signaling to mTOR: Signals for the survival of human cancer cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 949-955.	2.4	182
5	Regulation of mTOR by Phosphatidic Acid?: Figure 1 Cancer Research, 2007, 67, 1-4.	0.9	181
6	Targeting mTOR with rapamycin: One dose does not fit all. Cell Cycle, 2009, 8, 1026-1029.	2.6	119
7	Phospholipase D and the Maintenance of Phosphatidic Acid Levels for Regulation of Mammalian Target of Rapamycin (mTOR). Journal of Biological Chemistry, 2014, 289, 22583-22588.	3.4	108
8	Lipid sensing by mTOR complexes via de novo synthesis of phosphatidic acid. Journal of Biological Chemistry, 2017, 292, 6303-6311.	3.4	99
9	Phosphatidic acid and lipid-sensing by mTOR. Trends in Endocrinology and Metabolism, 2013, 24, 272-278.	7.1	89
10	Phospholipase D prevents apoptosis in v-Src-transformed rat fibroblasts and MDA-MB-231 breast cancer cells. Biochemical and Biophysical Research Communications, 2003, 302, 615-619.	2.1	85
11	The Enigma of Rapamycin Dosage. Molecular Cancer Therapeutics, 2016, 15, 347-353.	4.1	80
12	Aspartate Rescues S-phase Arrest Caused by Suppression of Glutamine Utilization in KRas-driven Cancer Cells. Journal of Biological Chemistry, 2016, 291, 9322-9329.	3.4	59
13	Amino Acids and mTOR Mediate Distinct Metabolic Checkpoints in Mammalian G1 Cell Cycle. PLoS ONE, 2013, 8, e74157.	2.5	58
14	Rapamycin-induced G1 cell cycle arrest employs both TGF-β and Rb pathways. Cancer Letters, 2015, 360, 134-140.	7.2	54
15	(-)-Oleocanthal rapidly and selectively induces cancer cell death via lysosomal membrane permeabilization. Molecular and Cellular Oncology, 2015, 2, e1006077.	0.7	53
16	Reciprocal Regulation of AMP-activated Protein Kinase and Phospholipase D. Journal of Biological Chemistry, 2015, 290, 6986-6993.	3.4	52
17	Glutamine as an Essential Amino Acid for KRas-Driven Cancer Cells. Trends in Endocrinology and Metabolism, 2019, 30, 357-368.	7.1	52
18	Synthetic lethality in KRas-driven cancer cells created by glutamine deprivation. Oncoscience, 2015, 2, 807-808	2.2	43

DAVID A FOSTER

#	Article	IF	CITATIONS
19	Phospholipase D–dependent mTOR complex 1 (mTORC1) activation by glutamine. Journal of Biological Chemistry, 2018, 293, 16390-16401.	3.4	41
20	5-Aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR) enhances the efficacy of rapamycin in human cancer cells. Cell Cycle, 2015, 14, 3331-3339.	2.6	40
21	Targeting mTOR-mediated survival signals in anticancer therapeutic strategies. Expert Review of Anticancer Therapy, 2004, 4, 691-701.	2.4	31
22	Regulation of Phosphatidic Acid Phosphohydrolase by Epidermal Growth Factor. Journal of Biological Chemistry, 1996, 271, 29529-29532.	3.4	26
23	Myc stabilization in response to estrogen and phospholipase D in MCF-7 breast cancer cells. FEBS Letters, 2006, 580, 5647-5652.	2.8	26
24	Mutant Ras Elevates Dependence on Serum Lipids and Creates a Synthetic Lethality for Rapamycin. Molecular Cancer Therapeutics, 2014, 13, 733-741.	4.1	26
25	Apoptotic effects of high-dose rapamycin occur in S-phase of the cell cycle. Cell Cycle, 2015, 14, 2285-2292.	2.6	26
26	Phospholipase D2 stimulates cell protrusion in v-Src-transformed cells. Biochemical and Biophysical Research Communications, 2002, 293, 201-206.	2.1	25
27	Phosphatidic acid drives mTORC1 lysosomal translocation in the absence of amino acids. Journal of Biological Chemistry, 2020, 295, 263-274.	3.4	19
28	A Late G1 Lipid Checkpoint That Is Dysregulated in Clear Cell Renal Carcinoma Cells. Journal of Biological Chemistry, 2017, 292, 936-944.	3.4	17
29	Inhibition of S6 kinase suppresses the apoptotic effect of eIF4E ablation by inducing TGF-β-dependent G1 cell cycle arrest. Cancer Letters, 2013, 333, 239-243.	7.2	16
30	(-)-Oleocanthal and (-)-oleocanthal-rich olive oils induce lysosomal membrane permeabilization in cancer cells. PLoS ONE, 2019, 14, e0216024.	2.5	16
31	Elevated phospholipase D activity in androgen-insensitive prostate cancer cells promotes both survival and metastatic phenotypes. Cancer Letters, 2018, 423, 28-35.	7.2	13
32	Elevated phospholipase D activity induces apoptosis in normal rat fibroblasts. Biochemical and Biophysical Research Communications, 2002, 298, 474-477.	2.1	12
33	Inhibition of fatty acid synthase induces pro-survival Akt and ERK signaling in K-Ras-driven cancer cells. Cancer Letters, 2014, 353, 258-263.	7.2	11
34	Reduced mortality and moderate alcohol consumption: The phospholipase D-mTOR connection. Cell Cycle, 2010, 9, 1291-1294.	2.6	9
35	Cancer cells with defective RB and CDKN2A are resistant to the apoptotic effects of rapamycin. Cancer Letters, 2021, 522, 164-170.	7.2	7
36	Metabolic vulnerability of KRAS-driven cancer cells. Molecular and Cellular Oncology, 2014, 1, e963445.	0.7	5

#	Article	IF	CITATIONS
37	Albumin promotes the progression of fibroblasts through late G ₁ into S-phase in the absence of growth factors. Cell Cycle, 2020, 19, 2158-2167.	2.6	3
38	Hidesaburo Hanafusa (1929–2009). Nature, 2009, 458, 718-718.	27.8	0