List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7612029/publications.pdf Version: 2024-02-01

YULFENC 7HAO

#	Article	IF	CITATIONS
1	Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres. Nature Communications, 2015, 6, 8503.	12.8	529
2	An Isolated Zinc–Cobalt Atomic Pair for Highly Active and Durable Oxygen Reduction. Angewandte Chemie - International Edition, 2019, 58, 2622-2626.	13.8	494
3	Nâ€Doping and Defective Nanographitic Domain Coupled Hard Carbon Nanoshells for High Performance Lithium/Sodium Storage. Advanced Functional Materials, 2018, 28, 1706294.	14.9	392
4	Nickel Cobalt Hydroxide @Reduced Graphene Oxide Hybrid Nanolayers for High Performance Asymmetric Supercapacitors with Remarkable Cycling Stability. ACS Applied Materials & Interfaces, 2016, 8, 1992-2000.	8.0	360
5	Highâ€Performance Asymmetric Supercapacitors Based on Multilayer MnO ₂ /Graphene Oxide Nanoflakes and Hierarchical Porous Carbon with Enhanced Cycling Stability. Small, 2015, 11, 1310-1319.	10.0	326
6	Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy and Environmental Science, 2019, 12, 2890-2923.	30.8	317
7	Oxygen-Rich Hierarchical Porous Carbon Derived from Artemia Cyst Shells with Superior Electrochemical Performance. ACS Applied Materials & Interfaces, 2015, 7, 1132-1139.	8.0	257
8	Challenges and opportunities for supercapacitors. APL Materials, 2019, 7, .	5.1	257
9	N,B-codoped defect-rich graphitic carbon nanocages as high performance multifunctional electrocatalysts. Nano Energy, 2017, 42, 334-340.	16.0	238
10	N-P-O co-doped high performance 3D graphene prepared through red phosphorous-assisted "cutting-thin―technique: A universal synthesis and multifunctional applications. Nano Energy, 2016, 28, 346-355.	16.0	217
11	Distinguished Zn,Co-Nx-C-Sy active sites confined in dentric carbon for highly efficient oxygen reduction reaction and flexible Zn-air Batteries. Nano Energy, 2019, 58, 277-283.	16.0	204
12	Supported dual-atom catalysts: Preparation, characterization, and potential applications. Chinese Journal of Catalysis, 2020, 41, 783-798.	14.0	174
13	Recent Progress in Advanced Organic Electrode Materials for Sodiumâ€lon Batteries: Synthesis, Mechanisms, Challenges and Perspectives. Advanced Functional Materials, 2020, 30, 1908445.	14.9	173
14	Schottky Junction Effect on High Performance Fuel Cells Based on Nanocomposite Materials. Advanced Energy Materials, 2015, 5, 1401895.	19.5	166
15	Nanostructured cathode materials for lithium–sulfur batteries: progress, challenges and perspectives. Journal of Materials Chemistry A, 2017, 5, 3014-3038.	10.3	165
16	Turning on Zn 4s Electrons in a N ₂ â€Znâ€B ₂ Configuration to Stimulate Remarkable ORR Performance. Angewandte Chemie - International Edition, 2021, 60, 181-185.	13.8	161
17	Hybrid energy storage devices: Advanced electrode materials and matching principles. Energy Storage Materials, 2019, 21, 22-40.	18.0	160
18	N-graphene motivated SnO2@SnS2 heterostructure quantum dots for high performance lithium/sodium storage. Energy Storage Materials, 2019, 20, 225-233.	18.0	159

#	Article	IF	CITATIONS
19	All-solid-state high performance asymmetric supercapacitors based on novel MnS nanocrystal and activated carbon materials. Scientific Reports, 2016, 6, 23289.	3.3	147
20	Graphitic Carbon Nitride Induced Microâ€Electric Field for Dendriteâ€Free Lithium Metal Anodes. Advanced Energy Materials, 2019, 9, 1803186.	19.5	147
21	FeP Quantum Dots Confined in Carbonâ€Nanotubeâ€Grafted Pâ€Doped Carbon Octahedra for Highâ€Rate Sodium Storage and Fullâ€Cell Applications. Advanced Functional Materials, 2020, 30, 1909283.	14.9	143
22	Monolayer Nickel Cobalt Hydroxyl Carbonate for High Performance All-Solid-State Asymmetric Supercapacitors. ACS Applied Materials & amp; Interfaces, 2016, 8, 22997-23005.	8.0	140
23	A covalent heterostructure of monodisperse Ni2P immobilized on N, P-co-doped carbon nanosheets for high performance sodium/lithium storage. Nano Energy, 2018, 48, 510-517.	16.0	139
24	Enhanced Fe 3d delocalization and moderate spin polarization in Fe Ni atomic pairs for bifunctional ORR and OER electrocatalysis. Applied Catalysis B: Environmental, 2021, 285, 119778.	20.2	131
25	ltinerant ferromagnetic half metallic cobalt–iron couples: promising bifunctional electrocatalysts for ORR and OER. Journal of Materials Chemistry A, 2019, 7, 27175-27185.	10.3	122
26	An Isolated Zinc–Cobalt Atomic Pair for Highly Active and Durable Oxygen Reduction. Angewandte Chemie, 2019, 131, 2648-2652.	2.0	116
27	A review of phosphorus and phosphides as anode materials for advanced sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 4996-5048.	10.3	108
28	Enabling Fast Na ⁺ Transfer Kinetics in the Wholeâ€Voltageâ€Region of Hard arbon Anodes for Ultrahighâ€Rate Sodium Storage. Advanced Materials, 2022, 34, e2109282.	21.0	108
29	Top-Down Strategy to Synthesize Mesoporous Dual Carbon Armored MnO Nanoparticles for Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2017, 9, 12680-12686.	8.0	100
30	Three dimensional few-layer porous carbon nanosheets towards oxygen reduction. Applied Catalysis B: Environmental, 2017, 211, 148-156.	20.2	99
31	Synergistic Coupling of Ni Nanoparticles with Ni ₃ C Nanosheets for Highly Efficient Overall Water Splitting. Small, 2020, 16, e2001642.	10.0	97
32	Activated Carbon Fiber Derived from Sisal with Large Specific Surface Area for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 4716-4723.	6.7	93
33	Electrospun free-standing FeP@NPC film for flexible sodium ion batteries with remarkable cycling stability. Energy Storage Materials, 2020, 29, 78-83.	18.0	92
34	Hybridized Phosphate with Ultrathin Nanoslices and Single Crystal Microplatelets for High Performance Supercapacitors. Scientific Reports, 2016, 6, 17613.	3.3	86
35	Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries. Nature Communications, 2022, 13, .	12.8	85
36	A review of carbon dots and their composite materials for electrochemical energy technologies. , 2021, 3, 795-826.		77

#	Article	IF	CITATIONS
37	Molybdenum Carbide-Derived Chlorine-Doped Ordered Mesoporous Carbon with Few-Layered Graphene Walls for Energy Storage Applications. ACS Applied Materials & Interfaces, 2017, 9, 3702-3712.	8.0	75
38	Highâ€Indexed PtNi Alloy Skin Spiraled on Pd Nanowires for Highly Efficient Oxygen Reduction Reaction Catalysis. Small, 2019, 15, e1900288.	10.0	73
39	Construction of a novel hierarchical structured NH ₄ -Co-Ni phosphate toward an ultrastable aqueous hybrid capacitor. Nanoscale, 2016, 8, 6636-6645.	5.6	69
40	Modulating the Interlayer Spacing and Na ⁺ /Vacancy Disordering of P2-Na _{0.67} MnO ₂ for Fast Diffusion and High-Rate Sodium Storage. ACS Applied Materials & Interfaces, 2019, 11, 6978-6985.	8.0	69
41	Synthesis of peanut-like hierarchical manganese carbonate microcrystals via magnetically driven self-assembly for high performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 3923-3931.	10.3	65
42	Progress in and application prospects of advanced and cost-effective iron (Fe)-based cathode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 1938-1969.	10.3	65
43	Recent Advances and Optimization Strategies on the Electrolytes for Hard Carbon and Pâ€Based Sodium″on Batteries. Advanced Functional Materials, 2021, 31, 2006066.	14.9	63
44	A novel synthesis of carbon nanotubes directly from an indecomposable solid carbon source for electrochemical applications. Journal of Materials Chemistry A, 2016, 4, 2137-2146.	10.3	59
45	Morphology Controlled Synthesis of Nickel Cobalt Oxide for Supercapacitor Application with Enhanced Cycling Stability. Electrochimica Acta, 2015, 174, 51-56.	5.2	58
46	MOF-assisted synthesis of octahedral carbon-supported PtCu nanoalloy catalysts for an efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 19348-19356.	10.3	58
47	A highly ordered multi-layered hydrogenated TiO ₂ -II phase nanowire array negative electrode for 2.4ÂV aqueous asymmetric supercapacitors with high energy density and long cycle life. Journal of Materials Chemistry A, 2018, 6, 623-632.	10.3	56
48	Electronic Structure Control of Tungsten Oxide Activated by Ni for Ultrahighâ€Performance Supercapacitors. Small, 2018, 14, e1800381.	10.0	55
49	Interface-rich mixed P2 + T phase Na _x Co _{0.1} Mn _{0.9} O ₂ (0.44 ≤i>x ≤0.7) toward fast and high capacity sodium storage. Journal of Materials Chemistry A, 2018, 6, 6675-6684.	10.3	54
50	A Multifunctional Separator Enables Safe and Durable Lithium/Magnesium–Sulfur Batteries under Elevated Temperature. Advanced Energy Materials, 2020, 10, 1902023.	19.5	51
51	Multihierarchical Structure of Hybridized Phosphates Anchored on Reduced Graphene Oxide for High Power Hybrid Energy Storage Devices. ACS Sustainable Chemistry and Engineering, 2017, 5, 5679-5685.	6.7	49
52	A robust carbon coating of Na3V2(PO4)3 cathode material for high performance sodium-ion batteries. Chinese Chemical Letters, 2021, 32, 3570-3574.	9.0	48
53	Modulating the Graphitic Domains of Hard Carbons Derived from Mixed Pitch and Resin to Achieve High Rate and Stable Sodium Storage. Small, 2022, 18, e2105568.	10.0	47
54	A review of nickel-rich layered oxide cathodes: synthetic strategies, structural characteristics, failure mechanism, improvement approaches and prospects. Applied Energy, 2022, 305, 117849.	10.1	44

#	Article	IF	CITATIONS
55	Wide Working Temperature Range Rechargeable Lithium–Sulfur Batteries: A Critical Review. Advanced Functional Materials, 2021, 31, 2107136.	14.9	43
56	A Review of Performance Attenuation and Mitigation Strategies of Lithiumâ€ŀon Batteries. Advanced Functional Materials, 2022, 32, 2107769.	14.9	43
57	Functional semiconductor–ionic composite GDC–KZnAl/LiNiCuZnOx for single-component fuel cell. RSC Advances, 2014, 4, 9920.	3.6	42
58	Ultra-high performance of Li/Na ion batteries using N/O dual dopant porous hollow carbon nanocapsules as an anode. Journal of Materials Chemistry A, 2019, 7, 11117-11126.	10.3	42
59	Turning on Zn 4s Electrons in a N ₂ â€Znâ€8 ₂ Configuration to Stimulate Remarkable ORR Performance. Angewandte Chemie, 2021, 133, 183-187.	2.0	42
60	Construction nasicon-type NaTi2(PO4)3 nanoshell on the surface of P2-type Na0.67Co0.2Mn0.8O2 cathode for superior room/low-temperature sodium storage. Chemical Engineering Journal, 2020, 402, 126181.	12.7	40
61	Molybdenum Carbideâ€PtCu Nanoalloy Heterostructures on MOFâ€Đerived Carbon toward Efficient Hydrogen Evolution. Small, 2021, 17, e2104241.	10.0	40
62	Vertically-aligned BCN Nanotube Arrays with Superior Performance in Electrochemical capacitors. Scientific Reports, 2014, 4, 6083.	3.3	38
63	Identifying the Zn–Co binary as a robust bifunctional electrocatalyst in oxygen reduction and evolution reactions via shifting the apexes of the volcano plot. Journal of Energy Chemistry, 2021, 55, 162-168.	12.9	33
64	Recent Progress in Amorphous Carbonâ€Based Materials for Anodes of Sodiumâ€lon Batteries: Synthesis Strategies, Mechanisms, and Performance. ChemSusChem, 2021, 14, 3693-3723.	6.8	32
65	MOF-Derived Co3O4 Polyhedrons as Efficient Polysulfides Barrier on Polyimide Separators for High Temperature Lithium–sulfur Batteries. Nanomaterials, 2019, 9, 1574.	4.1	30
66	Recent advances in semimetallic pnictogen (As, Sb, Bi) based anodes for sodium-ion batteries: Structural design, charge storage mechanisms, key challenges and perspectives. Nano Research, 2021, 14, 3690-3723.	10.4	30
67	Rational design of Na0.67Ni0.2Co0.2Mn0.6O2 microsphere cathode material for stable and low temperature sodium ion storage. Chemical Engineering Journal, 2022, 428, 130990.	12.7	30
68	Ultrahigh rate and durable sodium-ion storage at a wide potential window via lanthanide doping and perovskite surface decoration on layered manganese oxides. Energy Storage Materials, 2021, 42, 209-218.	18.0	29
69	Bismuth nanorods confined in hollow carbon structures for high performance sodium- and potassium-ion batteries. Journal of Energy Chemistry, 2022, 67, 787-796.	12.9	28
70	Achieving High-Energy Full-Cell Lithium-Storage Performance by Coupling High-Capacity V ₂ O ₃ with Low-Potential Ni ₂ P Anode. ACS Applied Materials & Interfaces, 2019, 11, 19-25.	8.0	26
71	Interface engineering of FeCo-Co structure as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries via alloying degree control strategy. Chemical Engineering Journal, 2022, 433, 133686.	12.7	25
72	Three-dimensional hierarchical porous hard carbon for excellent sodium/potassium storage and mechanism investigation. Materials Today Energy, 2021, 20, 100673.	4.7	24

#	Article	IF	CITATIONS
73	A durable P2-type layered oxide cathode with superior low-temperature performance for sodium-ion batteries. Science China Materials, 2022, 65, 328-336.	6.3	22
74	A closed-loop regeneration of LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ and graphite from spent batteries <i>via</i> efficient lithium supplementation and structural remodelling. Sustainable Energy and Fuels, 2021, 5, 4981-4991.	4.9	21
75	Co, N co-doped porous carbons as high-performance oxygen reduction electrocatalysts. New Carbon Materials, 2021, 36, 209-218.	6.1	21
76	Pulsed electrodeposition of mesoporous cobalt-doped manganese dioxide as supercapacitor electrode material. Ionics, 2014, 20, 243-249.	2.4	18
77	Largely Increased Lithium Storage Ability of Mangnese Oxide through a Continuous Electronic Structure Modulation and Elevated Capacitive Contribution. ACS Sustainable Chemistry and Engineering, 2019, 7, 740-747.	6.7	18
78	Trace Nb-doped Na0.7Ni0.3Co0.1Mn0.6O2 with suppressed voltage decay and enhanced low temperature performance. Chinese Chemical Letters, 2021, 32, 849-853.	9.0	17
79	Comparative study on three commercial carbons for supercapacitor applications. Russian Journal of Electrochemistry, 2015, 51, 77-85.	0.9	15
80	Construction of 3D carbon network with N,B,F-tridoping for efficient oxygen reduction reaction electrocatalysis and high performance zinc air battery. Applied Surface Science, 2020, 507, 145154.	6.1	15
81	A comprehensive modification enables the high rate capability of P2-Na0.75Mn0.67Ni0.33O2 for sodium-ion cathode materials. Journal of Energy Chemistry, 2022, 69, 442-449.	12.9	15
82	Realizing simultaneously enhanced energy and power density full-cell construction using mixed hard carbon/Li4Ti5O12 electrode. Rare Metals, 2021, 40, 65-71.	7.1	13
83	Sodiumâ€lon Batteries: Recent Progress in Advanced Organic Electrode Materials for Sodiumâ€lon Batteries: Synthesis, Mechanisms, Challenges and Perspectives (Adv. Funct. Mater. 11/2020). Advanced Functional Materials, 2020, 30, 2070071.	14.9	12
84	P ₄ Nb ₂ O ₁₅ @CNTs: A New Type of Niobium Phosphate Compositing Carbon Nanotube Used as Anode Material for High-Rate Lithium Storage. ACS Sustainable Chemistry and Engineering, 2021, 9, 216-223.	6.7	10
85	Sb ₂ S ₃ @YP Nanostructured Anode Material Synthesized by a Novel Vaporization-Condensation Method for Long Cycle-Life Sodium-Ion Battery. Journal of the Electrochemical Society, 2020, 167, 140531.	2.9	10
86	Hierarchical porous TiO ₂ templated from natural Artemia cyst shells for photocatalysis applications. RSC Advances, 2014, 4, 20393-20397.	3.6	9
87	A facile synthetic protocol of α-Fe ₂ O ₃ @FeS ₂ nanocrystals for advanced electrochemical capacitors. CrystEngComm, 2021, 23, 2432-2438.	2.6	9
88	A novel Mo8.7Nb6.1Ox@NCs egg-nest composite structure as superior anode material for lithium-ion storage. Rare Metals, 2022, 41, 2645-2654.	7.1	9
89	Investigation of oxygen reduction reaction and methanol tolerance on the carbon supported Pt-Pd catalysts. Russian Journal of Electrochemistry, 2015, 51, 345-352.	0.9	7
90	N-B-F Tridoped 3D Hierarchical Porous Graphitized Carbon Derived from Chitosan for High Performance Supercapacitors. Science of Advanced Materials, 2019, 11, 418-424.	0.7	7

#	Article	IF	CITATIONS
91	Boosting Oxygen Reduction Catalysis Through Electronic Reconfiguration of Fe–N–C Induced by P Doping. Electrocatalysis, 2021, 12, 747-758.	3.0	6
92	Fast and extensive intercalation chemistry in Wadsley-Roth phase based high-capacity electrodes. Journal of Energy Chemistry, 2022, 69, 601-611.	12.9	6
93	Facile synthesis of bimetallic zeolite imidazolate framework with enhanced lithium storage performance. Ionics, 2020, 26, 2107-2115.	2.4	5
94	Sb ₂ S ₃ @SnO ₂ hetero-nanocomposite as high-performance anode material for sodium-ion battery. International Journal of Green Energy, 2020, 17, 1044-1050.	3.8	5
95	Preparation and Photocatalysis of Schlumbergera bridgesii-Like CdS Modified One-Dimensional TiO2 Nanowires on Zeolite. Journal of Materials Engineering and Performance, 2015, 24, 700-708.	2.5	4
96	Facile Synthesis of SnNb ₂ O ₆ @C Composite with Ultrathin Carbon Layer as Anode Materials for Highâ€Performance Sodiumâ€ion Batteries. Chemistry - an Asian Journal, 2022, 17, .	3.3	2
97	Magnesium–Sulfur Batteries: A Multifunctional Separator Enables Safe and Durable Lithium/Magnesium–Sulfur Batteries under Elevated Temperature (Adv. Energy Mater. 5/2020). Advanced Energy Materials, 2020, 10, 2070019.	19.5	1
98	Preparation and Electrochemical Performance of Co Doped P3-K _{<i>x</i>} MnO ₂ . Journal of Nanoelectronics and Optoelectronics, 2021, 16, 1528-1536.	0.5	0
99	Highâ€Quality Nâ€Doped Graphene with Controllable Nitrogen Bonding Configurations Derived from Ionic Liquids. Chemistry - an Asian Journal, 0, , .	3.3	Ο