Yasunobu Okada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7611856/publications.pdf

Version: 2024-02-01

139 7,382 47 81 g-index

141 141 141 4852

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Vasopressin Neurons Respond to Hyperosmotic Stimulation with Regulatory Volume Increase and Secretory Volume Decrease by Activating Ion Transporters and Ca2+ Channels. Cellular Physiology and Biochemistry, 2021, 55, 119-134.	1.6	4
2	TRPM7 is an essential regulator for volume-sensitive outwardly rectifying anion channel. Communications Biology, 2021, 4, 599.	4.4	9
3	The ATP-Releasing Maxi-Cl Channel: Its Identity, Molecular Partners, and Physiological/Pathophysiological Implications. Life, 2021, 11, 509.	2.4	9
4	Cell Death Induction and Protection by Activation of Ubiquitously Expressed Anion/Cation Channels. Part 2: Functional and Molecular Properties of ASOR/PAC Channels and Their Roles in Cell Volume Dysregulation and Acidotoxic Cell Death. Frontiers in Cell and Developmental Biology, 2021, 9, 702317.	3.7	14
5	Editorial: Ion and Water Transport in Cell Death. Frontiers in Cell and Developmental Biology, 2021, 9, 757033.	3.7	1
6	Positive Inotropic Effects of ATP Released via the Maxi-Anion Channel in Langendorff-Perfused Mouse Hearts Subjected to Ischemia-Reperfusion. Frontiers in Cell and Developmental Biology, 2021, 9, 597997.	3.7	6
7	Properties, Structures, and Physiological Roles of Three Types of Anion Channels Molecularly Identified in the 2010's. Frontiers in Physiology, 2021, 12, 805148.	2.8	2
8	Expression and functions of N-type Cav2.2 and T-type Cav3.1 channels in rat vasopressin neurons under normotonic conditions. Journal of Physiological Sciences, 2020, 70, 49.	2.1	0
9	Cryo-EM structure of the volume-regulated anion channel LRRC8D isoform identifies features important for substrate permeation. Communications Biology, 2020, 3, 240.	4.4	35
10	Cell Death Induction and Protection by Activation of Ubiquitously Expressed Anion/Cation Channels. Part 1: Roles of VSOR/VRAC in Cell Volume Regulation, Release of Double-Edged Signals and Apoptotic/Necrotic Cell Death. Frontiers in Cell and Developmental Biology, 2020, 8, 614040.	3.7	18
11	Annexin A2-S100A10 Represents the Regulatory Component of Maxi-Cl Channel Dependent on Protein Tyrosine Dephosphorylation and Intracellular Ca²â³. Cellular Physiology and Biochemistry, 2020, 54, 538-555.	1.6	6
12	TRPM7 is involved in acidâ€induced necrotic cell death in a manner sensitive to progesterone in human cervical cancer cells. Physiological Reports, 2019, 7, e14157.	1.7	20
13	Herbal components of Japanese Kampo medicines exert laxative actions in colonic epithelium cells via activation of BK and CFTR channels. Scientific Reports, 2019, 9, 15554.	3.3	2
14	Tweety Homologs (TTYH) Freshly Join the Journey of Molecular Identification of the VRAC/VSOR Channel Pore. Experimental Neurobiology, 2019, 28, 131-133.	1.6	8
15	Roles of volume-regulatory anion channels, VSOR and Maxi-Cl, in apoptosis, cisplatin resistance, necrosis, ischemic cell death, stroke and myocardial infarction. Current Topics in Membranes, 2019, 83, 205-283.	0.9	34
16	Cell Volume-Activated and Volume-Correlated Anion Channels in Mammalian Cells: Their Biophysical, Molecular, and Pharmacological Properties. Pharmacological Reviews, 2019, 71, 49-88.	16.0	61
17	Cellular mechanism for herbal medicine Junchoto to facilitate intestinal Clâ^'/water secretion that involves cAMP-dependent activation of CFTR. Journal of Natural Medicines, 2018, 72, 694-705.	2.3	10
18	Molecular Identities and ATP Release Activities of Two Types of Volume-Regulatory Anion Channels, VSOR and Maxi-Cl. Current Topics in Membranes, 2018, 81, 125-176.	0.9	27

#	Article	IF	CITATIONS
19	The organic anion transporter <scp>SLCO</scp> 2A1 constitutes the core component of the Maxi l channel. EMBO Journal, 2017, 36, 3309-3324.	7.8	46
20	Specific and essential but not sufficient roles of LRRC8A in the activity of volume-sensitive outwardly rectifying anion channel (VSOR). Channels, 2017, 11, 109-120.	2.8	30
21	Distinct contributions of LRRC8A and its paralogs to the VSOR anion channel from those of the ASOR anion channel. Channels, 2017, 11, 167-172.	2.8	18
22	Persistently Declining Research Capability of Japan Behind a Nobel Prize Fever. Trends in the Sciences, 2017, 22, 5_96-5_99.	0.0	0
23	Channelling frozen cells to survival after thawing: opening the door to cryoâ€physiology. Journal of Physiology, 2016, 594, 1523-1524.	2.9	7
24	The properties, functions, and pathophysiology of maxi-anion channels. Pflugers Archiv European Journal of Physiology, 2016, 468, 405-420.	2.8	38
25	Distinct pharmacological and molecular properties of the acid-sensitive outwardly rectifying (ASOR) anion channel from those of the volume-sensitive outwardly rectifying (VSOR) anion channel. Pflugers Archiv European Journal of Physiology, 2016, 468, 795-803.	2.8	37
26	Biophysics and Physiology of the Volume-Regulated Anion Channel (VRAC)/Volume-Sensitive Outwardly Rectifying Anion Channel (VSOR). Pflugers Archiv European Journal of Physiology, 2016, 468, 371-383.	2.8	139
27	Temperature sensitivity of acid-sensitive outwardly rectifying (ASOR) anion channels in cortical neurons is involved in hypothermic neuroprotection against acidotoxic necrosis. Channels, 2014, 8, 278-283.	2.8	30
28	Acid-sensitive outwardly rectifying (ASOR) anion channels in human epithelial cells are highly sensitive to temperature and independent of CIC-3. Pflugers Archiv European Journal of Physiology, 2013, 465, 1535-1543.	2.8	36
29	TMEM16F is a component of a Ca ²⁺ -activated Cl ^{â^'} channel but not a volume-sensitive outwardly rectifying Cl ^{â^'} channel. American Journal of Physiology - Cell Physiology, 2013, 304, C748-C759.	4.6	109
30	Volume-Sensitive Anion Channels Mediate Osmosensitive Glutathione Release from Rat Thymocytes. PLoS ONE, 2013, 8, e55646.	2.5	17
31	Maxi-anion channel and pannexin 1 hemichannel constitute separate pathways for swelling-induced ATP release in murine L929 fibrosarcoma cells. American Journal of Physiology - Cell Physiology, 2012, 303, C924-C935.	4.6	38
32	The Apoptotic Volume Decrease Is an Upstream Event of MAP Kinase Activation during Staurosporine-Induced Apoptosis in HeLa Cells. International Journal of Molecular Sciences, 2012, 13, 9363-9379.	4.1	27
33	Protective Role of Cardiac CFTR Activation Upon Early Reperfusion Against Myocardial Infarction. Cellular Physiology and Biochemistry, 2012, 30, 1023-1038.	1.6	21
34	Apoptotic Volume Decrease (AVD) Is Independent of Mitochondrial Dysfunction and Initiator Caspase Activation. Cells, 2012, 1, 1156-1167.	4.1	18
35	The ΔC spliceâ€variant of TRPM2 is the hypertonicityâ€induced cation channel in HeLa cells, and the ectoâ€enzyme CD38 mediates its activation. Journal of Physiology, 2012, 590, 1121-1138.	2.9	25
36	Involvements of the ABC protein ABCF2 and αâ€actininâ€4 in regulation of cell volume and anion channels in human epithelial cells. Journal of Cellular Physiology, 2012, 227, 3498-3510.	4.1	23

#	Article	IF	Citations
37	Early-phase occurrence of K+ and Clâ^ efflux in addition to Ca2+ mobilization is a prerequisite to apoptosis in HeLa cells. Apoptosis: an International Journal on Programmed Cell Death, 2012, 17, 821-831.	4.9	33
38	Ion Channel Pore Sizing in Patch-Clamp Experiments. Springer Protocols, 2012, , 389-402.	0.3	1
39	Regulation of bradykininâ€induced activation of volumeâ€sensitive outwardly rectifying anion channels by Ca ²⁺ nanodomains in mouse astrocytes. Journal of Physiology, 2011, 589, 3909-3927.	2.9	59
40	Ca ²⁺ Nanodomain-Mediated Component of Swelling-Induced Volume-Sensitive Outwardly Rectifying Anion Current Triggered by Autocrine Action of ATP in Mouse Astrocytes. Cellular Physiology and Biochemistry, 2011, 28, 1181-1190.	1.6	50
41	V ₂ Receptor–Mediated Autocrine Role of Somatodendritic Release of AVP in Rat Vasopressin Neurons Under Hypo-Osmotic Conditions. Science Signaling, 2011, 4, ra5.	3.6	40
42	Swelling-Activated Anion Channels Are Essential for Volume Regulation of Mouse Thymocytes. International Journal of Molecular Sciences, 2011, 12, 9125-9137.	4.1	25
43	Endogenous arginine vasopressin-positive retinal cells in arginine vasopressin-eGFP transgenic rats identified by immunohistochemistry and reverse transcriptase-polymerase chain reaction. Molecular Vision, 2011, 17, 3254-61.	1.1	9
44	Volume-sensitive outwardly rectifying chloride channel in white adipocytes from normal and diabetic mice. American Journal of Physiology - Cell Physiology, 2010, 298, C900-C909.	4.6	20
45	Inhibition of Protein Kinase Akt1 by Apoptosis Signal-regulating Kinase-1 (ASK1) Is Involved in Apoptotic Inhibition of Regulatory Volume Increase. Journal of Biological Chemistry, 2010, 285, 6109-6117.	3.4	31
46	The Puzzles of Volume-Activated Anion Channels. , 2010, , 283-306.		7
47	Activation of maxi-anion channel by protein tyrosine dephosphorylation. American Journal of Physiology - Cell Physiology, 2009, 297, C990-C1000.	4.6	23
48	The maxi-anion channel: a classical channel playing novel roles through an unidentified molecular entity. Journal of Physiological Sciences, 2009, 59, 3-21.	2.1	92
49	Pathophysiology and puzzles of the volumeâ€sensitive outwardly rectifying anion channel. Journal of Physiology, 2009, 587, 2141-2149.	2.9	91
50	Bradykininâ€induced astrocyte–neuron signalling: glutamate release is mediated by ROSâ€activated volumeâ€sensitive outwardly rectifying anion channels. Journal of Physiology, 2009, 587, 2197-2209.	2.9	85
51	Oxygen-glucose deprivation induces ATP release via maxi-anion channels in astrocytes. Purinergic Signalling, 2008, 4, 147-154.	2.2	76
52	Maxi-anion channel as a candidate pathway for osmosensitive ATP release from mouse astrocytes in primary culture. Cell Research, 2008, 18, 558-565.	12.0	104
53	Spatial Distribution of Maxi-Anion Channel on Cardiomyocytes Detected by Smart-Patch Technique. Biophysical Journal, 2008, 94, 1646-1655.	0.5	49
54	Hypertonicity-induced cation channels rescue cells from staurosporine-elicited apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2008, 13, 895-903.	4.9	23

#	Article	IF	CITATIONS
55	Molecular determinants of sensitivity and conductivity of human TRPM7 to Mg ²⁺ and Ca ²⁺ . Channels, 2008, 2, 283-286.	2.8	22
56	Proton Conductivity through the Human TRPM7 Channel and Its Molecular Determinants. Journal of Biological Chemistry, 2008, 283, 15097-15103.	3.4	28
57	IK1 channel activity contributes to cisplatin sensitivity of human epidermoid cancer cells. American Journal of Physiology - Cell Physiology, 2008, 294, C1398-C1406.	4.6	28
58	Volume-sensitive Cl(-) channel as a regulator of acquired cisplatin resistance. Anticancer Research, 2008, 28, 75-83.	1.1	27
59	TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells. American Journal of Physiology - Cell Physiology, 2007, 292, C460-C467.	4.6	201
60	Roles of Volume-Sensitive Chloride Channel in Excitotoxic Neuronal Injury. Journal of Neuroscience, 2007, 27, 1445-1455.	3.6	77
61	Signalling Events Employed in the Hypertonic Activation of Cation Channels in HeLa Cells. Cellular Physiology and Biochemistry, 2007, 20, 075-082.	1.6	8
62	Direct Mechano-Stress Sensitivity of TRPM7 Channel. Cellular Physiology and Biochemistry, 2007, 19, 1-8.	1.6	129
63	Ca2+-dependent glycolysis activation mediates apoptotic ATP elevation in HeLa cells. Biochemical and Biophysical Research Communications, 2007, 363, 687-693.	2.1	20
64	Impaired activity of volume-sensitive Clâ^' channel is involved in cisplatin resistance of cancer cells. Journal of Cellular Physiology, 2007, 211, 513-521.	4.1	76
65	Anion channel blockers attenuate delayed neuronal cell death induced by transient forebrain ischemia. Journal of Neuroscience Research, 2007, 85, 1427-1435.	2.9	40
66	Role of acid-sensitive outwardly rectifying anion channels in acidosis-induced cell death in human epithelial cells. Pflugers Archiv European Journal of Physiology, 2007, 454, 223-233.	2.8	48
67	A Novel Inhibitor of Hypertonicity-Induced Cation Channels in HeLa Cells. Journal of Physiological Sciences, 2007, 57, 249-252.	2.1	6
68	Prerequisite role of persistent cell shrinkage in apoptosis of human epithelial cells. Acta Physiologica Sinica, 2007, 59, 512-6.	0.5	14
69	Cell Volume-Sensitive Chloride Channels: Phenotypic Properties and Molecular Identity., 2006, 152, 9-24.		52
70	Dysfunction of regulatory volume increase is a key component of apoptosis. FEBS Letters, 2006, 580, 6513-6517.	2.8	71
71	Normotonic Cell Shrinkage Induced by Na+ Deprivation Results in Apoptotic Cell Death in Human Epithelial HeLa Cells. Journal of Physiological Sciences, 2006, 56, 335-339.	2.1	15
72	Ion Channel Roles in Cell Death Induction. Journal of Membrane Biology, 2006, 209, 1-2.	2.1	8

#	Article	IF	Citations
73	Roles of two types of anion channels in glutamate release from mouse astrocytes under ischemic or osmotic stress. Glia, 2006, 54, 343-357.	4.9	116
74	Inhibition of Hypertonicity-Induced Cation Channels Sensitizes HeLa Cells to Shrinkage-Induced Apoptosis. Cellular Physiology and Biochemistry, 2006, 18, 295-302.	1.6	36
75	Genetic Demonstration That the Plasma Membrane Maxianion Channel and Voltage-dependent Anion Channels Are Unrelated Proteins. Journal of Biological Chemistry, 2006, 281, 1897-1904.	3.4	52
76	Volumeâ€sensitive chloride channels in mouse cortical neurons: characterization and role in volume regulation. European Journal of Neuroscience, 2005, 21, 1648-1658.	2.6	61
77	ATP release via anion channels. Purinergic Signalling, 2005, 1, 311-328.	2.2	154
78	Single-Channel Properties of Volume-Sensitive Clâ^' Channel in ClC-3–Deficient Cardiomyocytes. The Japanese Journal of Physiology, 2005, 55, 379-383.	0.9	25
79	Chloride Channel Inhibition Prevents ROSdependentApoptosis Induced by Ischemia-Reperfusion in Mouse Cardiomyocytes. Cellular Physiology and Biochemistry, 2005, 16, 147-154.	1.6	71
80	CIC-3-independent Sensitivity of Apoptosis to Cl ^{â€"} Channel Blockers in Mouse Cardiomyocytes. Cellular Physiology and Biochemistry, 2005, 15, 263-270.	1.6	32
81	HCO3-independent rescue from apoptosis by stilbene derivatives in rat cardiomyocytes. FEBS Letters, 2005, 579, 517-522.	2.8	21
82	The Role of ROS-Sensitive Anion Channel in Apoptosis Induction. Seibutsu Butsuri, 2005, 45, 297-301.	0.1	0
83	ATP-Conducting Maxi-Anion Channel: A New Player in Stress-Sensory Transduction. The Japanese Journal of Physiology, 2004, 54, 7-14.	0.9	53
84	Detecting ATP Release by a Biosensor Method. Science Signaling, 2004, 2004, pl14-pl14.	3.6	49
85	CIC-3-independent, PKC-dependent Activity of Volume-sensitive Cl ⁻ Channel in Mouse Ventricular Cardiomyocytes. Cellular Physiology and Biochemistry, 2004, 14, 213-224.	1.6	68
86	A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl- channel. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6770-6773.	7.1	214
87	Role of ATP-conductive anion channel in ATP release from neonatal rat cardiomyocytes in ischaemic or hypoxic conditions. Journal of Physiology, 2004, 559, 799-812.	2.9	122
88	Ion Channels and Transporters Involved in Cell Volume Regulation and Sensor Mechanisms. Cell Biochemistry and Biophysics, 2004, 41, 233-258.	1.8	110
89	Dual roles of plasmalemmal chloride channels in induction of cell death. Pflugers Archiv European Journal of Physiology, 2004, 448, 287-295.	2.8	107
90	Regulatory volume increase after secretory volume decrease in colonic epithelial cells under muscarinic stimulation. Pflugers Archiv European Journal of Physiology, 2004, 448, 596-604.	2.8	10

#	Article	IF	Citations
91	Expression of novel isoforms of the CIC-1 chloride channel in astrocytic glial cells in vitro. Glia, 2004, 47, 46-57.	4.9	17
92	Wide Nanoscopic Pore of Maxi-Anion Channel Suits its Function as an ATP-Conductive Pathway. Biophysical Journal, 2004, 87, 1672-1685.	0.5	74
93	Sizing the pore of the volume-sensitive anion channel by differential polymer partitioning. FEBS Letters, 2004, 576, 433-436.	2.8	57
94	Anion Channel Involved in Induction of Apoptosis and Necrosis. , 2004, 559, 205-209.		7
95	Recovery from lactacidosis-induced glial cell swelling with the aid of exogenous anion channels. Glia, 2003, 41, 247-259.	4.9	28
96	Upregulation of Swellingâ€Activated Cl â^' Channel Sensitivity to Cell Volume by Activation of EGF Receptors in Murine Mammary Cells. Journal of Physiology, 2003, 549, 749-758.	2.9	27
97	Hypertonic activation of a non-selective cation conductance in HeLa cells and its contribution to cell volume regulation. FEBS Letters, 2003, 551, 20-24.	2.8	38
98	Macula densa cell signaling involves ATP release through a maxi anion channel. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4322-4327.	7.1	263
99	IK channels are involved in the regulatory volume decrease in human epithelial cells. American Journal of Physiology - Cell Physiology, 2003, 284, C77-C84.	4.6	79
100	Calcium-activated nonselective cationic channel in macula densa cells. American Journal of Physiology - Renal Physiology, 2003, 285, F275-F280.	2.7	13
101	Ischemia-Induced Enhancement of CFTR Expression on the Plasma Membrane in Neonatal Rat Ventricular Myocytes. The Japanese Journal of Physiology, 2003, 53, 357-365.	0.9	10
102	Two-photon excitation fluorescence imaging of the living juxtaglomerular apparatus. American Journal of Physiology - Renal Physiology, 2002, 283, F197-F201.	2.7	80
103	LTRPC2 Ca2+-Permeable Channel Activated by Changes in Redox Status Confers Susceptibility to Cell Death. Molecular Cell, 2002, 9, 163-173.	9.7	746
104	Impaired activity of volume-sensitive anion channel during lactacidosis-induced swelling in neuronally differentiated NG108-15 cells. Brain Research, 2002, 957, 1-11.	2.2	23
105	Down-regulation of volume-sensitive Cl - channels by CFTR is mediated by the second nucleotide-binding domain. Pflugers Archiv European Journal of Physiology, 2002, 445, 177-186.	2.8	34
106	Regulation of an ATPâ€conductive largeâ€conductance anion channel and swellingâ€induced ATP release by arachidonic acid. Journal of Physiology, 2002, 542, 803-816.	2.9	69
107	Phloretin differentially inhibits volume-sensitive and cyclic AMP-activated, but not Ca-activated, Clâ ⁻ channels. British Journal of Pharmacology, 2001, 133, 1096-1106.	5.4	73
108	Receptorâ€mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). Journal of Physiology, 2001, 532, 3-16.	2.9	487

#	Article	IF	CITATIONS
109	Apoptosis, cell volume regulation and volume-regulatory chloride channels. Comparative Biochemistry and Physiology Part A, Molecular & Emp; Integrative Physiology, 2001, 130, 377-383.	1.8	173
110	Volume-Dependent Atp-Conductive Large-Conductance Anion Channel as a Pathway for Swelling-Induced Atp Release. Journal of General Physiology, 2001, 118, 251-266.	1.9	204
111	Ca 2+ â€sensing receptorâ€mediated regulation of volumeâ€sensitive Cl â^' channels in human epithelial cells. Journal of Physiology, 2000, 528, 457-472.	2.9	25
112	Swellingâ€activated, cystic fibrosis transmembrane conductance regulatorâ€augmented ATP release and Cl â^ conductances in murine C127 cells. Journal of Physiology, 2000, 523, 1-11.	2.9	83
113	Receptor-Mediated Facilitation of Cell Volume Regulation by Swelling-Induced ATP Release in Human Epithelial Cells The Japanese Journal of Physiology, 2000, 50, 235-241.	0.9	59
114	Volume Expansion Sensitivity of Swelling-Activated Cl- Channel in Human Epithelial Cells The Japanese Journal of Physiology, 2000, 50, 277-280.	0.9	21
115	Swelling-Induced, Cftr-Independent Atp Release from a Human Epithelial Cell Line. Journal of General Physiology, 1999, 114, 525-533.	1.9	122
116	A scaffolding for regulation of volume-sensitive Clâ° channels. Journal of Physiology, 1999, 520, 2-2.	2.9	13
117	Activation of cAMP-dependent Clâ^'currents in guinea-pig Paneth cells without relevant evidence for CFTR expression. Journal of Physiology, 1998, 512, 765-777.	2.9	21
118	Probing the water permeability of ROMK1 and amphotericin B channels using Xenopus oocytes. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1368, 19-26.	2.6	12
119	Criteria for the Molecular Identification of the Volume-Sensitive Outwardly Rectifying Clâ^' Channel. Journal of General Physiology, 1998, 112, 365-367.	1.9	26
120	Tyrosine Kinase-Independent Extracellular Action of Genistein on the CFTR Cl- Channel in Guinea Pig Ventricular Myocytes and CFTR-Transfected Mouse Fibroblasts The Japanese Journal of Physiology, 1998, 48, 389-396.	0.9	21
121	Glibenclamide blocks volume-sensitive Cl ^{â^'} channels by dual mechanisms. American Journal of Physiology - Cell Physiology, 1998, 275, C343-C351.	4.6	65
122	Volume-sensitive Chloride Channel Activity Does Not Depend on Endogenous P-glycoprotein. Journal of Biological Chemistry, 1995, 270, 27887-27893.	3.4	50
123	Glibenclamide, an ATP-Sensitive K ⁺ Channel Blocker, Inhibits Cardiac cAMP-Activated Cl ^{â^'} Conductance. Circulation Research, 1995, 77, 417-423.	4.5	84
124	Histamine modulates three types of K+ current in a human intestinal epithelial cell line. Pflugers Archiv European Journal of Physiology, 1994, 428, 468-475.	2.8	6
125	Osmotic Swelling Activates Intermediate-Conductance Cl- Channels in Human Intestinal Epithelial Cells The Japanese Journal of Physiology, 1994, 44, 403-409.	0.9	41
126	Exocytosis upon osmotic swelling in human epithelial cells. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1107, 201-205.	2.6	35

#	Article	IF	CITATIONS
127	Biphasic rises in cytosolic free Ca2+ in association with activation of K+ and Cl? conductance during the regulatory volume decrease in cultured human epithelial cells. Pflugers Archiv European Journal of Physiology, 1990, 416, 710-714.	2.8	49
128	Stretch-induced activation of Ca2+-permeable ion channels is involved in the volume regulation of hypotonically swollen epithelial cells. Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1990, 12, S5-S13.	0.0	30
129	Involvement of Ca2+-induced Ca2+ release in the volume regulation of human epithelial cells exposed to a hypotonic medium. Biochemical and Biophysical Research Communications, 1990, 167, 287-293.	2.1	54
130	Ca²⁺ is prerequisite for cell fusion induced by electric pulses . Biomedical Research, 1984, 5, 511-516.	0.9	9
131	Electrical activity of an intestinal epithelial cell line: Hyperpolarizing responses to intestinal secretagogues. Journal of Membrane Biology, 1984, 77, 33-44.	2.1	41
132	Somatic hybridization between human and mouse lymphoblast cells produced by an electric pulse-induced fusion technique Cell Structure and Function, 1984, 9, 193-196.	1.1	9
133	Cyclic changes in cytoplasmic free Ca²⁺ during membrane potential oscillations in fibroblasts . Biomedical Research, 1983, 4, 231-234.	0.9	16
134	Calcium channel and calcium pump involved in oscillatory hyperpolarizing responses of Lâ€strain mouse fibroblasts. Journal of Physiology, 1982, 327, 449-461.	2.9	46
135	å°è…,ãŠã,^ã³å§è…,ä,Šçš®ç~胞ã«ãŠã⁵ã,<電解賳ã®è¼,逕 Membrane, 1982, 7, 269-282.	0.0	0
136	Oscillation of intracellular Cl- activity and membrane potential in cultured fibroblasts (L cells) The Japanese Journal of Physiology, 1981, 31, 609-612.	0.9	2
137	Membrane Potential Measurements in Cultured Intestinal Villi. Membrane Biochemistry, 1980, 3, 147-153.	0.6	11
138	Ionic Mechanism of Hyperpolarizing Responses in Fibroblasts. Seibutsu Butsuri, 1980, 20, 17-31.	0.1	0
139	Electrical Properties and Ion Permeabilities in Intestinal Epithelia. Seibutsu Butsuri, 1976, 16, 126-135.	0.1	11