Tingting Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7610503/publications.pdf Version: 2024-02-01

TINCTING XII

#	Article	IF	CITATIONS
1	Conjugated polymer–inorganic semiconductor hybrid solar cells. Energy and Environmental Science, 2011, 4, 2700.	30.8	278
2	Strategic improvement of the long-term stability of perovskite materials and perovskite solar cells. Physical Chemistry Chemical Physics, 2016, 18, 27026-27050.	2.8	134
3	Phenylhydrazinium Iodide for Surface Passivation and Defects Suppression in Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2000778.	14.9	103
4	Investigation on structures, band gaps, and electronic structures of lead free La2NiMnO6 double perovskite materials for potential application of solar cell. Journal of Alloys and Compounds, 2016, 655, 208-214.	5.5	100
5	Facile synthesis, photoluminescence properties and microwave absorption enhancement of porous and hollow ZnO spheres. Powder Technology, 2015, 281, 20-27.	4.2	70
6	Highâ€Performance Organic Solar Cells with Broadband Absorption Enhancement and Reliable Reproducibility Enabled by Collective Plasmonic Effects. Advanced Optical Materials, 2015, 3, 1220-1231.	7.3	66
7	Recent progress of silicon composites as anode materials for secondary batteries. RSC Advances, 2016, 6, 87778-87790.	3.6	61
8	Transparent MoS ₂ /PEDOT Composite Counter Electrodes for Bifacial Dye-Sensitized Solar Cells. ACS Omega, 2020, 5, 8687-8696.	3.5	60
9	Synthesis of Singleâ€Component Metal Oxides with Controllable Multiâ€Shelled Structure and their Morphologyâ€Related Applications. Chemical Record, 2020, 20, 102-119.	5.8	52
10	Novel hierarchically porous Ti-MOFs/nitrogen-doped graphene nanocomposite served as high efficient oxygen reduction reaction catalyst for fuel cells application. Electrochimica Acta, 2019, 297, 805-813.	5.2	49
11	Ternary system of ZnO nanorods/reduced graphene oxide/CuInS2 quantum dots for enhanced photocatalytic performance. Journal of Alloys and Compounds, 2018, 734, 196-203.	5.5	48
12	Easy hydrothermal synthesis of multi-shelled La2O3 hollow spheres for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2018, 29, 1232-1237.	2.2	44
13	Efficient and Stable Carbon-Based Perovskite Solar Cells via Passivation by a Multifunctional Hydrophobic Molecule with Bidentate Anchors. ACS Applied Materials & Interfaces, 2021, 13, 16485-16497.	8.0	30
14	Pyridine Derivatives' Surface Passivation Enables Efficient and Stable Carbon-Based Perovskite Solar Cells. , 2022, 4, 1101-1111.		30
15	Novel hexagonal Bi2O2CO3 porous nanoplate/nitrogen-doped graphene nanomaterials with enhanced electrochemical properties for oxygen reduction reaction in acidic media for fuel cells. Carbon, 2019, 152, 459-473.	10.3	29
16	Carbon quantum dot additive engineering for efficient and stable carbon-based perovskite solar cells. Journal of Alloys and Compounds, 2021, 859, 157784.	5.5	29
17	Exciton migration and charge transfer in chemically linked P3HT–TiO ₂ nanorod composite. RSC Advances, 2012, 2, 854-862.	3.6	25
18	Highly Efficient Oxygen Reduction Reaction Catalyst Derived from Fe/Ni Mixed-Metal–Organic Frameworks for Application of Fuel Cell Cathode. Industrial & Engineering Chemistry Research, 2019, 58, 10224-10237.	3.7	25

TINGTING XU

#	Article	IF	CITATIONS
19	Gadolinium-incorporated CsPbI2Br for boosting efficiency and long-term stability of all-inorganic perovskite solar cells. Journal of Energy Chemistry, 2022, 70, 9-17.	12.9	22
20	Study of polymer/ZnO nanostructure interfaces by Kelvin probe force microscopy. Solar Energy Materials and Solar Cells, 2013, 108, 246-251.	6.2	20
21	Environmental effects on the ionic conductivity of poly(methyl methacrylate) (PMMA)-based quasi-solid-state electrolyte. Ionics, 2018, 24, 2621-2629.	2.4	19
22	Dual core-shell structured g-C3N4@Fe/Sr@g-C3N4 porous nanosphere as high efficient oxygen reduction reaction electrocatalyst in both acidic and alkaline media for fuel cells. Electrochimica Acta, 2019, 322, 134745.	5.2	17
23	Self-Polymerized Dopamine Nanoparticles Modified Separators for Improving Electrochemical Performance and Enhancing Mechanical Strength of Lithium-Ion Batteries. Polymers, 2020, 12, 648.	4.5	14
24	Self-assembled thienylsilane molecule as interfacial layer forÂZnO nanowire/polymer hybrid system. Journal of Photonics for Energy, 2011, 1, 011107.	1.3	13
25	Carbon Quantum Dot-Passivated Perovskite/Carbon Electrodes for Stable Solar Cells. ACS Applied Nano Materials, 2021, 4, 13339-13351.	5.0	13
26	Study on 3D printed graphene/carbon fiber multi-scale reinforced PLA composites. Materials Letters, 2021, 300, 130173.	2.6	12
27	Superior Cu 2 S/brass-mesh electrode in CdS quantum dot sensitized solar cells for dual-side illumination. Materials Letters, 2017, 195, 100-103.	2.6	9
28	Solid-state synthesis of ZnO nanorods coupled with reduced graphene oxide for photocatalytic application. Journal of Materials Science: Materials in Electronics, 2018, 29, 4888-4894.	2.2	9
29	Improved Performance of Carbon Electrode Perovskite Solar Cells Using Urea Treatment in Two tep Processing. ChemNanoMat, 2020, 6, 806-815.	2.8	9
30	Synthesis of borosilazane as UV-curable borazine-type single source precursor for SiBCN ceramic materials. Ceramics International, 2015, 41, 10448-10455.	4.8	8
31	Synthesis and Characterization of a Novel Borazine-Type UV Photo-Induced Polymerization of Ceramic Precursors. Molecules, 2016, 21, 801.	3.8	8
32	Hollow dual core-shell nanocomposite of nitrogen-doped Carbon@Bi12SiO20@Nitrogen-doped graphene as high efficiency catalyst for fuel cell. Electrochimica Acta, 2019, 323, 134824.	5.2	8
33	Enhanced catalytic property of transparent PEDOT counter electrodes for bifacial dye sensitized solar cells. Materials Today Communications, 2020, 25, 101313.	1.9	8
34	Octahedron shaped lead sulfide nanocrystals as counter electrodes for quantum dot sensitized solar cells. Functional Materials Letters, 2018, 11, 1850025.	1.2	7
35	Effect of antisolvent treatment on PbI2 films for high performance carbon-based perovskite solar cells. Materials Letters, 2020, 275, 128157.	2.6	7
36	Direct growth of CdSe nanorods on ITO substrates by co-anchoring of ZnO nanoparticles and ethylenediamine. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	4

TINGTING XU

#	Article	IF	CITATIONS
37	Synthesis of Silicon Molecular Precursor Chlorosilyl Dichloroboryl Ethane (CSDE) through Experiment Optimization. Chemistry Letters, 2015, 44, 70-72.	1.3	3
38	Cation Engineering for Effective Defect Passivation to Improve Efficiency and Stability of FA0.5MA0.5PbI3 Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 7654-7660.	5.1	3
39	Borazine-type single source precursor with vinyl to SiBCN ceramic. Journal of the Ceramic Society of Japan, 2018, 126, 253-259.	1.1	2
40	A bifunctional modifier endowing epoxy resin with outstanding flame retardancy and high impact strength. Journal of Applied Polymer Science, 2021, 138, 50886.	2.6	2
41	The structure and photovoltaic property relationship of porphyrins for high efficiency solar cells. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	1
42	Bulk p-i-n heterojunction solar cells made from hyperbranched phthalocyanine polymers. , 2010, , .		1
43	In-situ polymerized poly(3-hexylthiophene) and TiO <inf>2</inf> nanocomposites for organic solar cells. , 2010, , .		Ο
44	Organic Photovoltaics: Basic Concepts and Device Physics. , 2015, , 1-17.		0
45	Organic Photovoltaics: Basic Concepts and Device Physics. , 2016, , 3119-3134.		Ο
46	A novel phosphorus compound acting as a substitute of <scp>DOPO</scp> for flame retard of epoxy resin. Journal of Applied Polymer Science, 2022, 139, .	2.6	0