
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/76103/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Consequences of changing biodiversity. Nature, 2000, 405, 234-242.	13.7	3,209
2	Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 2008, 11, 1065-1071.	3.0	1,913
3	Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 2008, 11, 1252-1264.	3.0	1,684
4	Effects of plant species on nutrient cycling. Trends in Ecology and Evolution, 1992, 7, 336-339.	4.2	1,031
5	Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10967-10972.	3.3	1,023
6	Biological stoichiometry from genes to ecosystems. Ecology Letters, 2000, 3, 540-550.	3.0	867
7	Temperature and Plant Species Control Over Litter Decomposition in Alaskan Tundra. Ecological Monographs, 1996, 66, 503-522.	2.4	831
8	Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature, 2006, 440, 922-925.	13.7	780
9	Growth rate-stoichiometry couplings in diverse biota. Ecology Letters, 2003, 6, 936-943.	3.0	758
10	Impacts of Biodiversity Loss Escalate Through Time as Redundancy Fades. Science, 2012, 336, 589-592.	6.0	672
11	Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecology Letters, 2005, 8, 811-818.	3.0	586
12	Controls over carbon storage and turnover in high-latitude soils. Global Change Biology, 2000, 6, 196-210.	4.2	525
13	Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11911-11916.	3.3	511
14	Arctic and boreal ecosystems of western North America as components of the climate system. Global Change Biology, 2000, 6, 211-223.	4.2	488
15	TREE SPECIES EFFECTS ON DECOMPOSITION AND FOREST FLOOR DYNAMICS IN A COMMON GARDEN. Ecology, 2006, 87, 2288-2297.	1.5	482
16	Plant functional types as predictors of transient responses of arctic vegetation to global change. Journal of Vegetation Science, 1996, 7, 347-358.	1.1	461
17	NUTRIENT LIMITATION OF DECOMPOSITION IN HAWAIIAN FORESTS. Ecology, 2000, 81, 1867-1877.	1.5	410
18	Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends in Ecology and Evolution, 2015, 30, 357-363.	4.2	379

#	Article	IF	CITATIONS
19	Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass?. Journal of Ecology, 2001, 89, 984-994.	1.9	360
20	Ecological homogenization of urban USA. Frontiers in Ecology and the Environment, 2014, 12, 74-81.	1.9	343
21	Effects of Long-Term Nitrogen Addition on Microbial Enzyme Activity in Eight Forested and Grassland Sites: Implications for Litter and Soil Organic Matter Decomposition. Ecosystems, 2009, 12, 1-15.	1.6	326
22	Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature, 2018, 553, 194-198.	13.7	325
23	Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden: generalizations and differences in ecosystem and plant type responses to global change. Global Change Biology, 2004, 10, 105-123.	4.2	299
24	Social-ecological and technological factors moderate the value of urban nature. Nature Sustainability, 2019, 2, 29-38.	11.5	293
25	Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytologist, 2021, 232, 1123-1158.	3.5	277
26	THE RESPONSE OF TUNDRA PLANT BIOMASS, ABOVEGROUND PRODUCTION, NITROGEN, AND CO2FLUX TO EXPERIMENTAL WARMING. Ecology, 1998, 79, 1526-1544.	1.5	274
27	Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4177-4182.	3.3	268
28	Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass?. , 2001, 89, 984.		256
29	Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO ₂ . Ecology Letters, 2010, 13, 564-575.	3.0	252
30	Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nature Geoscience, 2014, 7, 920-924.	5.4	251
31	Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature, 2018, 562, 263-267.	13.7	248
32	Contrasting Effects of Substrate and Fertilizer Nitrogen on the Early Stages of Litter Decomposition. Ecosystems, 2005, 8, 644-656.	1.6	244
33	Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecological Monographs, 2012, 82, 389-405.	2.4	237
34	Climate, soil and plant functional types as drivers of global fineâ€root trait variation. Journal of Ecology, 2017, 105, 1182-1196.	1.9	234
35	Root depth distribution and the diversity–productivity relationship in a longâ€ŧerm grassland experiment. Ecology, 2013, 94, 787-793.	1.5	233
36	A synthesis: The role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant and Soil, 2002, 242, 163-170.	1.8	232

3

#	Article	IF	CITATIONS
37	Comparison of Labile Soil Organic Matter Fractionation Techniques. Soil Science Society of America Journal, 2004, 68, 1616-1625.	1.2	230
38	Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia, 2010, 162, 505-513.	0.9	229
39	Interactions between Litter Lignin and Nitrogenitter Lignin and Soil Nitrogen Availability during Leaf Litter Decomposition in a Hawaiian Montane Forest. Ecosystems, 2000, 3, 484-494.	1.6	228
40	Conversion From Agriculture To Grassland Builds Soil Organic Matter On Decadal Timescales. , 2006, 16, 143-153.		224
41	NITROGEN EFFECTS ON DECOMPOSITION: A FIVEâ€YEAR EXPERIMENT IN EIGHT TEMPERATE SITES. Ecology, 2008, 89, 2633-2644.	1.5	223
42	Temperature and the chemical composition of poikilothermic organisms. Functional Ecology, 2003, 17, 237-245.	1.7	221
43	Winter regulation of tundra litter carbon and nitrogen dynamics. Biogeochemistry, 1996, 35, 327-338.	1.7	217
44	A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytologist, 2021, 232, 973-1122.	3.5	216
45	Unexpected reversal of C ₃ versus C ₄ grass response to elevated CO ₂ during a 20-year field experiment. Science, 2018, 360, 317-320.	6.0	212
46	Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils. Soil Biology and Biochemistry, 2016, 99, 54-65.	4.2	205
47	Plant diversity effects on soil food webs are stronger than those of elevated CO ₂ and N deposition in a long-term grassland experiment. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6889-6894.	3.3	204
48	Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass. Nature Climate Change, 2013, 3, 278-282.	8.1	202
49	Stoichiometric tracking of soil nutrients by a desert insect herbivore. Ecology Letters, 2003, 6, 96-101.	3.0	200
50	Tree Species Effects on Soil Organic Matter Dynamics: The Role of Soil Cation Composition. Ecosystems, 2007, 10, 999-1018.	1.6	193
51	Sinks for nitrogen inputs in terrestrial ecosystems: a metaâ€analysis of ¹⁵ N tracer field studies. Ecology, 2012, 93, 1816-1829.	1.5	192
52	Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function. Nature Ecology and Evolution, 2018, 2, 976-982.	3.4	185
53	Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment. Biogeochemistry, 2012, 111, 601-614.	1.7	184
54	Geographic range predicts photosynthetic and growth response to warming in co-occurring treeAspecies. Nature Climate Change, 2015, 5, 148-152.	8.1	179

#	Article	IF	CITATIONS
55	Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10392-10397.	3.3	168
56	Assessing the homogenization of urban land management with an application to US residential lawn care. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4432-4437.	3.3	164
57	The effects of substrate composition, quantity, and diversity on microbial activity. Plant and Soil, 2010, 335, 397-411.	1.8	162
58	The Role of Photodegradation in Surface Litter Decomposition Across a Grassland Ecosystem Precipitation Gradient. Ecosystems, 2010, 13, 765-781.	1.6	161
59	HETEROTROPHIC NITROGEN FIXATION IN DECOMPOSING LITTER: PATTERNS AND REGULATION. Ecology, 2000, 81, 2366-2376.	1.5	160
60	Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. Biogeochemistry, 2010, 100, 57-73.	1.7	157
61	Nitrogen addition changes grassland soil organic matter decomposition. Biogeochemistry, 2015, 125, 203-219.	1.7	157
62	Decomposition of the finest root branching orders: linking belowground dynamics to fine-root function and structure. Ecological Monographs, 2011, 81, 89-102.	2.4	149
63	Linkages between plant functional composition, fine root processes and potential soil N mineralization rates. Journal of Ecology, 2009, 97, 48-56.	1.9	145
64	Spatial and temporal variation in islands of fertility in the Sonoran Desert. Biogeochemistry, 2005, 73, 541-553.	1.7	143
65	Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology, 2015, 96, 1459-1465.	1.5	143
66	Early stages of root and leaf decomposition in Hawaiian forests: effects of nutrient availability. Oecologia, 1999, 121, 564-573.	0.9	142
67	Nature-based approaches to managing climate change impacts in cities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190124.	1.8	132
68	Spatially disjunct effects of co-occurring competition and facilitation. Ecology Letters, 2005, 8, 1191-1200.	3.0	131
69	Litter decomposition in moist acidic and non-acidic tundra with different glacial histories. Oecologia, 2004, 140, 113-124.	0.9	128
70	An experimental test of limits to tree establishment in Arctic tundra. Journal of Ecology, 1998, 86, 449-461.	1.9	123
71	Plant Responses to Species Removal and Experimental Warming in Alaskan Tussock Tundra. Oikos, 1999, 84, 417.	1.2	120
72	Foliar and soil nutrients in tundra on glacial landscapes of contrasting ages in northern Alaska. Oecologia, 2002, 131, 453-462.	0.9	120

#	Article	IF	CITATIONS
73	Response of tundra CH4 and CO2 flux tomanipulation of temperature and vegetation. Biogeochemistry, 1998, 41, 215-235.	1.7	119
74	Reduced feeding activity of soil detritivores under warmer and drier conditions. Nature Climate Change, 2018, 8, 75-78.	8.1	117
75	Past, Present, and Future Roles of Long-Term Experiments in the LTER Network. BioScience, 2012, 62, 377-389.	2.2	116
76	Phylogenetic and functional characteristics of household yard floras and their changes along an urbanization gradient. Ecology, 2012, 93, S83.	1.5	115
77	The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide. ISME Journal, 2012, 6, 259-272.	4.4	110
78	Global patterns in fine root decomposition: climate, chemistry, mycorrhizal association and woodiness. Ecology Letters, 2019, 22, 946-953.	3.0	110
79	Divergent effects of elevated CO2, N fertilization, and plant diversity on soil C and N dynamics in a grassland field experiment. Plant and Soil, 2005, 272, 41-52.	1.8	107
80	Title is missing!. Biogeochemistry, 2000, 51, 283-302.	1.7	106
81	Soil organic carbon stability in forests: Distinct effects of tree species identity and traits. Global Change Biology, 2019, 25, 1529-1546.	4.2	104
82	Nitrate is an important nitrogen source for Arctic tundra plants. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3398-3403.	3.3	102
83	Ectomycorrhizal fungal response to warming is linked to poor host performance at the borealâ€ŧemperate ecotone. Global Change Biology, 2017, 23, 1598-1609.	4.2	100
84	Legume species identity and soil nitrogen supply determine symbiotic nitrogenâ€fixation responses to elevated atmospheric [CO 2]. New Phytologist, 2005, 167, 523-530.	3.5	99
85	Carbon, nitrogen, and phosphorus fluxes in household ecosystems in the Minneapolis-Saint Paul, Minnesota, urban region. , 2011, 21, 619-639.		96
86	Effects of pH and calcium on soil organic matter dynamics in Alaskan tundra. Biogeochemistry, 2012, 111, 569-581.	1.7	96
87	Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation?. Journal of Ecology, 2003, 91, 664-676.	1.9	94
88	Effects of plant diversity, <scp>N</scp> fertilization, and elevated carbon dioxide on grassland soil <scp>N</scp> cycling in a longâ€ŧerm experiment. Global Change Biology, 2013, 19, 1249-1261.	4.2	94
89	Elevated Carbon Dioxide Alters the Structure of Soil Microbial Communities. Applied and Environmental Microbiology, 2012, 78, 2991-2995.	1.4	93
90	Ecosystem services in managing residential landscapes: priorities, value dimensions, and cross-regional patterns. Urban Ecosystems, 2016, 19, 95-113.	1.1	93

#	Article	IF	CITATIONS
91	Interactive Effects of Time, CO2, N, and Diversity on Total Belowground Carbon Allocation and Ecosystem Carbon Storage in a Grassland Community. Ecosystems, 2009, 12, 1037-1052.	1.6	92
92	Harnessing plant spectra to integrate the biodiversity sciences across biological and spatial scales. American Journal of Botany, 2017, 104, 966-969.	0.8	92
93	Nitrogen deposition and plant species interact to influence soil carbon stabilization. Ecology Letters, 2004, 7, 1192-1198.	3.0	91
94	Light, earthworms, and soil resources as predictors of diversity of 10 soil invertebrate groups across monocultures of 14 tree species. Soil Biology and Biochemistry, 2016, 92, 184-198.	4.2	91
95	Resource availability underlies the plantâ€fungal diversity relationship in a grassland ecosystem. Ecology, 2018, 99, 204-216.	1.5	91
96	Mapping foliar functional traits and their uncertainties across three years in a grassland experiment. Remote Sensing of Environment, 2019, 221, 405-416.	4.6	89
97	Elevated <scp><scp>CO₂</scp> <fscp> stimulates grassland soil respiration by increasing carbon inputs rather than by enhancing soil moisture. Global Change Biology, 2011, 17, 3546-3563.</fscp></scp>	4.2	85
98	Arctic shrub growth trajectories differ across soil moisture levels. Global Change Biology, 2017, 23, 4294-4302.	4.2	85
99	Resource Amendments Influence Density and Competitive Phenotypes of Streptomyces in Soil. Microbial Ecology, 2009, 57, 413-420.	1.4	83
100	Continental-scale homogenization of residential lawn plant communities. Landscape and Urban Planning, 2017, 165, 54-63.	3.4	82
101	The effect of experimental warming and precipitation change on proteolytic enzyme activity: positive feedbacks to nitrogen availability are not universal. Global Change Biology, 2012, 18, 2617-2625.	4.2	80
102	Nematode community shifts in response to experimental warming and canopy conditions are associated with plant community changes in the temperate-boreal forest ecotone. Oecologia, 2014, 175, 713-723.	0.9	80
103	Convergence of microclimate in residential landscapes across diverse cities in the United States. Landscape Ecology, 2016, 31, 101-117.	1.9	78
104	Carbon and Nitrogen Cycling in Soils from Acidic and Nonacidic Tundra with Different Glacial Histories in Northern Alaska. Ecosystems, 2002, 5, 761-774.	1.6	77
105	Contrasting influences of stormflow and baseflow pathways on nitrogen and phosphorus export from an urban watershed. Biogeochemistry, 2014, 121, 209-228.	1.7	77
106	Effects of litter traits, soil biota, and soil chemistry on soil carbon stocks at a common garden with 14 tree species. Biogeochemistry, 2015, 123, 313-327.	1.7	77
107	Sensitivity of global soil carbon stocks to combined nutrient enrichment. Ecology Letters, 2019, 22, 936-945.	3.0	75
108	Evolutionary Legacy Effects on Ecosystems: Biogeographic Origins, Plant Traits, and Implications for Management in the Era of Global Change. Annual Review of Ecology, Evolution, and Systematics, 2016, 47, 433-462.	3.8	73

#	Article	IF	CITATIONS
109	Ecological homogenization of residential macrosystems. Nature Ecology and Evolution, 2017, 1, 191.	3.4	69
110	Species richness and traits predict overyielding in stem growth in an earlyâ€successional tree diversity experiment. Ecology, 2017, 98, 2601-2614.	1.5	68
111	Homogenization of plant diversity, composition, and structure in North American urban yards. Ecosphere, 2018, 9, e02105.	1.0	68
112	Hyphae move matter and microbes to mineral microsites: Integrating the hyphosphere into conceptual models of soil organic matter stabilization. Global Change Biology, 2022, 28, 2527-2540.	4.2	68
113	Trees and Streets as Drivers of Urban Stormwater Nutrient Pollution. Environmental Science & Technology, 2017, 51, 9569-9579.	4.6	66
114	Soil Processes Affected by Sixteen Grassland Species Grown under Different Environmental Conditions. Soil Science Society of America Journal, 2006, 70, 770-777.	1.2	65
115	Design and performance of combined infrared canopy and belowground warming in the B4Warm <scp>ED</scp> (Boreal Forest Warming at an Ecotone in Danger) experiment. Global Change Biology, 2015, 21, 2334-2348.	4.2	65
116	Stoichiometric response of nitrogen-fixing and non-fixing dicots to manipulations of CO2, nitrogen, and diversity. Oecologia, 2007, 151, 687-696.	0.9	64
117	Soil microbial, nematode, and enzymatic responses to elevated CO2, N fertilization, warming, and reduced precipitation. Soil Biology and Biochemistry, 2019, 135, 184-193.	4.2	64
118	Is oak establishment in old-fields and savanna openings context dependent?. Journal of Ecology, 2007, 95, 309-320.	1.9	63
119	Metagenomic reconstruction of nitrogen cycling pathways in a CO2-enriched grassland ecosystem. Soil Biology and Biochemistry, 2017, 106, 99-108.	4.2	63
120	Moving Towards a New Urban Systems Science. Ecosystems, 2017, 20, 38-43.	1.6	63
121	Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology, 2021, 102, e03218.	1.5	62
122	Responses of moist non-acidic arctic tundra to altered environment: productivity, biomass, and species richness. Oikos, 2003, 103, 204-216.	1.2	60
123	PLANT DIVERSITY, CO2, AND N INFLUENCE INORGANIC AND ORGANIC N LEACHING IN GRASSLANDS. Ecology, 2007, 88, 490-500.	1.5	60
124	Singleâ€pool exponential decomposition models: potential pitfalls in their use in ecological studies. Ecology, 2010, 91, 1225-1236.	1.5	60
125	Restoring Abandoned Farmland to Mitigate Climate Change on a Full Earth. One Earth, 2020, 3, 176-186.	3.6	60
126	Species compositional differences on different-aged glacial landscapes drive contrasting responses of tundra to nutrient addition. Journal of Ecology, 2005, 93, 770-782.	1.9	58

#	Article	IF	CITATIONS
127	Positive feedbacks between decomposition and soil nitrogen availability along fertility gradients. Plant and Soil, 2013, 367, 347-361.	1.8	58
128	Lifeâ€history evolution in the anthropocene: effects of increasing nutrients on traits and tradeâ€offs. Evolutionary Applications, 2015, 8, 635-649.	1.5	57
129	Elevated carbon dioxide accelerates the spatial turnover of soil microbial communities. Global Change Biology, 2016, 22, 957-964.	4.2	57
130	Convergent Surface Water Distributions in U.S. Cities. Ecosystems, 2014, 17, 685-697.	1.6	56
131	Identifying environmental drivers of greenhouse gas emissions under warming and reduced rainfall in boreal–temperate forests. Functional Ecology, 2017, 31, 2356-2368.	1.7	56
132	Saltcedar (Tamarix ramosissima) invasion alters organic matter dynamics in a desert stream. Freshwater Biology, 2004, 49, 65-76.	1.2	55
133	Functional diversity of leaf litter mixtures slows decomposition of labile but not recalcitrant carbon over two years. Ecological Monographs, 2020, 90, e01407.	2.4	55
134	The residential landscape: fluxes of elements and the role of household decisions. Urban Ecosystems, 2012, 15, 1-18.	1.1	54
135	Plant diversity maintains multiple soil functions in future environments. ELife, 2018, 7, .	2.8	54
136	The Diversity and Co-occurrence Patterns of N2-Fixing Communities in a CO2-Enriched Grassland Ecology, 2016, 71, 604-615.	1.4	52
137	Contribution of Leaf Litter to Nutrient Export during Winter Months in an Urban Residential Watershed. Environmental Science & Technology, 2017, 51, 3138-3147.	4.6	52
138	Decomposition of tree leaf litter on pavement: implications for urban water quality. Urban Ecosystems, 2014, 17, 369-385.	1.1	48
139	Fungal Communities Respond to Long-Term CO ₂ Elevation by Community Reassembly. Applied and Environmental Microbiology, 2015, 81, 2445-2454.	1.4	48
140	Effects of plant species diversity, atmospheric [CO2], and N addition on gross rates of inorganic N release from soil organic matter. Global Change Biology, 2006, 12, 1400-1408.	4.2	47
141	Elevated CO2 influences microbial carbon and nitrogen cycling. BMC Microbiology, 2013, 13, 124.	1.3	47
142	Repeated fire shifts carbon and nitrogen cycling by changing plant inputs and soil decomposition across ecosystems. Ecological Monographs, 2020, 90, e01409.	2.4	47
143	Controls over leaf and litter calcium concentrations among temperate trees. Biogeochemistry, 2007, 86, 175-187.	1.7	45
144	Do evergreen and deciduous trees have different effects on net N mineralization in soil?. Ecology, 2012, 93, 1463-1472.	1.5	45

#	Article	IF	CITATIONS
145	Synergistic effects of four climate change drivers on terrestrial carbon cycling. Nature Geoscience, 2020, 13, 787-793.	5.4	45
146	Effect of consumption choices on fluxes of carbon, nitrogen and phosphorus through households. Urban Ecosystems, 2007, 10, 97-117.	1.1	43
147	Biodiversity, Nitrogen Deposition, and CO2 Affect Grassland Soil Carbon Cycling but not Storage. Ecosystems, 2012, 15, 580-590.	1.6	43
148	Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands. Global Change Biology, 2020, 26, 2060-2071.	4.2	43
149	ERADICATION OF INVASIVE TAMARIX RAMOSISSIMA ALONG A DESERT STREAM INCREASES NATIVE FISH DENSITY. , 2005, 15, 2072-2083.		42
150	Effects of fire frequency on oak litter decomposition and nitrogen dynamics. Oecologia, 2008, 158, 535-543.	0.9	42
151	Tree Patches Show Greater N Losses but Maintain Higher Soil N Availability than Grassland Patches in a Frequently Burned Oak Savanna. Ecosystems, 2006, 9, 441-452.	1.6	41
152	Decadal changes in fire frequencies shift tree communities and functional traits. Nature Ecology and Evolution, 2021, 5, 504-512.	3.4	41
153	Experimental nitrogen fertilisation globally accelerates, then slows decomposition of leaf litter. Ecology Letters, 2021, 24, 802-811.	3.0	41
154	Longâ€lasting effects on nitrogen cycling 12 years after treatments cease despite minimal longâ€ŧerm nitrogen retention. Global Change Biology, 2009, 15, 1755-1766.	4.2	40
155	Allometry of fine roots in forest ecosystems. Ecology Letters, 2019, 22, 322-331.	3.0	37
156	Why "Feed the Lawn� Exploring the Influences on Residential Turf Grass Fertilization in the Minneapolisâ^'Saint Paul Metropolitan Area. Environment and Behavior, 2015, 47, 158-183.	2.1	35
157	Urban plant diversity in Los Angeles, California: Species and functional type turnover in cultivated landscapes. Plants People Planet, 2020, 2, 144-156.	1.6	35
158	Residential yard management and landscape cover affect urban bird community diversity across the continental USA. Ecological Applications, 2021, 31, e02455.	1.8	35
159	Effect of Simulated Climate Warming on the Ectomycorrhizal Fungal Community of Boreal and Temperate Host Species Growing Near Their Shared Ecotonal Range Limits. Microbial Ecology, 2018, 75, 348-363.	1.4	34
160	Belowground Biomass Response to Nutrient Enrichment Depends on Light Limitation Across Globally Distributed Grasslands. Ecosystems, 2019, 22, 1466-1477.	1.6	34
161	Municipal regulation of residential landscapes across US cities: Patterns and implications for landscape sustainability. Journal of Environmental Management, 2020, 275, 111132.	3.8	34
162	Stimulation of soil respiration by elevated CO ₂ is enhanced under nitrogen limitation in a decade-long grassland study. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33317-33324.	3.3	34

#	Article	IF	CITATIONS
163	Soil carbon stocks in temperate grasslands differ strongly across sites but are insensitive to decadeâ€long fertilization. Global Change Biology, 2022, 28, 1659-1677.	4.2	34
164	Urban trees reduce nutrient leaching to groundwater. Ecological Applications, 2016, 26, 1566-1580.	1.8	32
165	Strong photosynthetic acclimation and enhanced waterâ€use efficiency in grassland functional groups persist over 21Âyears of CO ₂ enrichment, independent of nitrogen supply. Global Change Biology, 2019, 25, 3031-3044.	4.2	32
166	Urban soil carbon and nitrogen converge at a continental scale. Ecological Monographs, 2020, 90, e01401.	2.4	32
167	Oxygenâ€isotope record of Lateâ€Glacial climatic change in western Ireland. Boreas, 1996, 25, 257-267.	1.2	31
168	Drivers of plant species richness and phylogenetic composition in urban yards at the continental scale. Landscape Ecology, 2019, 34, 63-77.	1.9	31
169	Diversityâ€dependent soil acidification under nitrogen enrichment constrains biomass productivity. Global Change Biology, 2020, 26, 6594-6603.	4.2	31
170	Soil enzymes as indicators of soil function: A step toward greater realism in microbial ecological modeling. Global Change Biology, 2022, 28, 1935-1950.	4.2	31
171	Contrasting Responses of Nitrogen-Fixation in Arctic Lichens to Experimental and Ambient Nitrogen and Phosphorus Availability. Arctic, Antarctic, and Alpine Research, 2005, 37, 396-401.	0.4	30
172	Horticultural availability and homeowner preferences drive plant diversity and composition in urban yards. Ecological Applications, 2020, 30, e02082.	1.8	30
173	Plant nitrogen concentration and isotopic composition in residential lawns across seven US cities. Oecologia, 2016, 181, 271-285.	0.9	29
174	Strong mineralogic control of soil organic matter composition in response to nutrient addition across diverse grassland sites. Science of the Total Environment, 2020, 736, 137839.	3.9	29
175	Terrestrial Ecosystems at Toolik Lake, Alaska. , 2014, , 90-142.		29
176	Stoichiometric relations in an ant-treehopper mutualism. Ecology Letters, 2004, 7, 1024-1028.	3.0	27
177	LONGâ€TERM BURNING INTERACTS WITH HERBIVORY TO SLOW DECOMPOSITION. Ecology, 2008, 89, 1188-119	941.5	27
178	Regional Contingencies in the Relationship between Aboveground Biomass and Litter in the World's Grasslands. PLoS ONE, 2013, 8, e54988.	1.1	27
179	Uniform shrub growth response to June temperature across the North Slope of Alaska. Environmental Research Letters, 2018, 13, 044013.	2.2	27
180	Organic nitrogen addition suppresses fungal richness and alters community composition in temperate forest soils. Soil Biology and Biochemistry, 2018, 125, 222-230.	4.2	27

#	Article	IF	CITATIONS
181	Microbial processing of plant remains is coâ€limited by multiple nutrients in global grasslands. Global Change Biology, 2020, 26, 4572-4582.	4.2	27
182	Lowâ€intensity frequent fires in coniferous forests transform soil organic matter in ways that may offset ecosystem carbon losses. Global Change Biology, 2021, 27, 3810-3823.	4.2	27
183	Satisfaction, water and fertilizer use in the American residential macrosystem. Environmental Research Letters, 2016, 11, 034004.	2.2	26
184	Limited potential for terrestrial carbon sequestration to offset fossilâ€fuel emissions in the upper midwestern US. Frontiers in Ecology and the Environment, 2010, 8, 409-413.	1.9	25
185	Sensitivity of grassland carbon pools to plant diversity, elevated CO ₂ , and soil nitrogen addition over 19 years. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
186	Influence of Terrestrial Vegetation on Sediment-Forming Processes in Kettle Lakes of West-Central Minnesota. Quaternary Research, 1992, 38, 103-116.	1.0	24
187	Disentangling species and functional group richness effects on soil N cycling in a grassland ecosystem. Global Change Biology, 2017, 23, 4717-4727.	4.2	24
188	Ideas and perspectives: Strengthening the biogeosciences in environmental research networks. Biogeosciences, 2018, 15, 4815-4832.	1.3	24
189	Contribution of nonâ€native plants to the phylogenetic homogenization of U.S. yard floras. Ecosphere, 2019, 10, e02638.	1.0	24
190	Linking yard plant diversity to homeowners' landscaping priorities across the U.S. Landscape and Urban Planning, 2020, 196, 103730.	3.4	23
191	Frequent burning causes large losses of carbon from deep soil layers in a temperate savanna. Journal of Ecology, 2020, 108, 1426-1441.	1.9	23
192	Effects of Landscape Age on Soil Organic Matter Processing in Northern Alaska. Soil Science Society of America Journal, 2011, 75, 907-917.	1.2	22
193	Sediment chemistry of urban stormwater ponds and controls on denitrification. Ecosphere, 2018, 9, e02318.	1.0	22
194	Neighborhood diversity simultaneously increased and decreased susceptibility to contrasting herbivores in an early stage forest diversity experiment. Journal of Ecology, 2019, 107, 1492-1505.	1.9	22
195	Legumes regulate grassland soil N cycling and its response to variation in species diversity and N supply but not CO ₂ . Global Change Biology, 2019, 25, 2396-2409.	4.2	21
196	Fire effects on insect herbivores in an oak savanna: the role of light and nutrients. Ecological Entomology, 2007, 32, 754-761.	1.1	20
197	A multi-city comparison of front and backyard differences in plant species diversity and nitrogen cycling in residential landscapes. Landscape and Urban Planning, 2018, 178, 102-111.	3.4	20
198	Microbial functional genes commonly respond to elevated carbon dioxide. Environment International, 2020, 144, 106068.	4.8	20

#	Article	IF	CITATIONS
199	Antagonistic effects of species on C respiration and net N mineralization in soils from mixed coniferous plantations. Forest Ecology and Management, 2009, 257, 1112-1118.	1.4	19
200	Residential household yard care practices along urban-exurban gradients in six climatically-diverse U.S. metropolitan areas. PLoS ONE, 2019, 14, e0222630.	1.1	19
201	Taxonomic, phylogenetic, and functional composition and homogenization of residential yard vegetation with contrasting management. Landscape and Urban Planning, 2020, 202, 103877.	3.4	19
202	Remotely detected aboveground plant function predicts belowground processes in two prairie diversity experiments. Ecological Monographs, 2022, 92, e1488.	2.4	19
203	Soil organic carbon is not just for soil scientists: measurement recommendations for diverse practitioners. Ecological Applications, 2021, 31, e02290.	1.8	18
204	Interactive effects of elevated <scp>CO₂</scp> , warming, reduced rainfall, and nitrogen on leaf gas exchange in five perennial grassland species. Plant, Cell and Environment, 2020, 43, 1862-1878.	2.8	17
205	SoDaH: the SOils DAta Harmonization database, an open-source synthesis of soil data from research networks, version 1.0. Earth System Science Data, 2021, 13, 1843-1854.	3.7	17
206	Soil nutrients increase longâ€ŧerm soil carbon gains threefold on retired farmland. Global Change Biology, 2021, 27, 4909-4920.	4.2	17
207	Long-Term Nitrogen Addition Does Not Increase Soil Carbon Storage or Cycling Across Eight Temperate Forest and Grassland Sites on a Sandy Outwash Plain. Ecosystems, 2019, 22, 1592-1605.	1.6	16
208	Realistic rates of nitrogen addition increase carbon flux rates but do not change soil carbon stocks in a temperate grassland. Global Change Biology, 2022, 28, 4819-4831.	4.2	16
209	Warming and disturbance alter soil microbiome diversity and function in a northern forest ecotone. FEMS Microbiology Ecology, 2020, 96, .	1.3	14
210	Distinct carbon fractions drive a generalisable twoâ€pool model of fungal necromass decomposition. Functional Ecology, 2021, 35, 796-806.	1.7	14
211	Contrasting effects of plant species traits and moisture on the decomposition of multiple litter fractions. Oecologia, 2015, 179, 573-584.	0.9	13
212	Nitrogen increases earlyâ€stage and slows lateâ€stage decomposition across diverse grasslands. Journal of Ecology, 2022, 110, 1376-1389.	1.9	12
213	Some plants like it warmer: Increased growth of three selected invasive plant species in soils with a history of experimental warming. Pedobiologia, 2014, 57, 57-60.	0.5	11
214	Disease and fire interact to influence transitions between savanna–forest ecosystems over a multiâ€decadal experiment. Ecology Letters, 2021, 24, 1007-1017.	3.0	11
215	Resilience: insights from the U.S. LongTerm Ecological Research Network. Ecosphere, 2021, 12, e03434.	1.0	11
216	Impacts of Global Change on Composition of Arctic Communities: Implications for Ecosystem Functioning. Ecological Studies, 1997, , 221-228.	0.4	10

#	Article	IF	CITATIONS
217	Bioavailability of dissolved organic carbon across a hillslope chronosequence in the Kuparuk River region, Alaska. Soil Biology and Biochemistry, 2014, 79, 25-33.	4.2	9
218	Dynamics of organic matter molecular composition under aerobic decomposition and their response to the nitrogen addition in grassland soils. Science of the Total Environment, 2022, 806, 150514.	3.9	9
219	Interactive effects of plants, decomposers, herbivores, and predators on nutrient cycling. , 2015, , 233-259.		8
220	Climate and lawn management interact to control C4plant distribution in residential lawns across seven U.S. cities. Ecological Applications, 2019, 29, e01884.	1.8	8
221	Estimating Litter Decomposition Rate in Single-Pool Models Using Nonlinear Beta Regression. PLoS ONE, 2012, 7, e45140.	1.1	7
222	Response to Comment on "Unexpected reversal of C ₃ versus C ₄ grass response to elevated CO ₂ during a 20-year field experiment― Science, 2018, 361, .	6.0	7
223	A tale of two studies: Detection and attribution of the impacts of invasive plants in observational surveys. Journal of Applied Ecology, 2018, 55, 1780-1789.	1.9	6
224	Potential impacts of emerald ash borer invasion on biogeochemical and water cycling in residential landscapes across a metropolitan region. Urban Ecosystems, 2012, 15, 1015-1030.	1.1	5
225	BII-Implementation: The causes and consequences of plant biodiversity across scales in a rapidly changing world. Research Ideas and Outcomes, 0, 7, .	1.0	5
226	HETEROTROPHIC NITROGEN FIXATION IN DECOMPOSING LITTER: PATTERNS AND REGULATION. , 2000, 81, 2366.		5
227	Impacts of nutrient addition on soil carbon and nitrogen stoichiometry and stability in globally-distributed grasslands. Biogeochemistry, 2022, 159, 353-370.	1.7	5
228	Linking Foliar Traits to Belowground Processes. , 2020, , 173-197.		4
229	Century-scale wood nitrogen isotope trajectories from an oak savanna with variable fire frequencies. Biogeosciences, 2020, 17, 4509-4522.	1.3	4
230	Effects of soil warming history on the performances of congeneric temperate and boreal herbaceous plant species and their associations with soil biota. Journal of Plant Ecology, 2016, , rtw066.	1.2	3
231	Response to Comment on "Unexpected reversal of C ₃ versus C ₄ grass response to elevated CO ₂ during a 20-year field experiment― Science, 2018, 361, .	6.0	3
232	Non-symbiotic soil microbes are more strongly influenced by altered tree biodiversity than arbuscular mycorrhizal fungi during initial forest establishment. FEMS Microbiology Ecology, 2019, 95, .	1.3	3
233	Patterns and trends of organic matter processing and transport: Insights from the US long-term ecological research network. Climate Change Ecology, 2021, 2, 100025.	0.9	3
234	Planetary Stewardship Begins at Home. Bulletin of the Ecological Society of America, 2011, 92, 389-391.	0.2	2

#	Article	IF	CITATIONS
235	Arctic Ecology. Books in Soils, Plants, and the Environment, 2007, , .	0.1	1
236	TREE SPECIES EFFECTS ON DECOMPOSITION AND FOREST FLOOR DYNAMICS IN A COMMON GARDEN. , 2006, 87, 2288.		1
237	A reply to Jarchow and Liebman. Frontiers in Ecology and the Environment, 2011, 9, 262-263.	1.9	0
238	The Qualities and Impacts of a Great Mentor—and How to Improve your own Mentoring. Bulletin of the Ecological Society of America, 2013, 94, 170-176.	0.2	0
239	Keeping up with the Times: Equity Issue is Now Added to Our Selfâ€Reflection Worksheet for Improving Scientific Mentoring. Bulletin of the Ecological Society of America, 2021, 102, e01841.	0.2	0