
S Franz Bender

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7609957/publications.pdf Version: 2024-02-01

S FDANZ RENDED

#	Article	IF	CITATIONS
1	Humidity and high temperature are important for predicting fungal disease outbreaks worldwide. New Phytologist, 2022, 234, 1553-1556.	7.3	49
2	Arbuscular mycorrhizal fungi mitigate soil nitrogen and phosphorus losses: A meta-analysis. Science of the Total Environment, 2022, 807, 150857.	8.0	32
3	Pulling the strings from underground? Soil biota and plant growth–defense tradeoffs. New Phytologist, 2022, 233, 1015-1017.	7.3	2
4	Narrow and Brittle or Broad and Nimble? Comparing Adaptive Capacity in Simplifying and Diversifying Farming Systems. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	42
5	Organic and conservation agriculture promote ecosystem multifunctionality. Science Advances, 2021, 7, .	10.3	104
6	Enrichment of <scp><i>nosZ</i></scp> â€ŧype denitrifiers by arbuscular mycorrhizal fungi mitigates <scp>N₂O</scp> emissions from soybean stubbles. Environmental Microbiology, 2021, 23, 6587-6602.	3.8	13
7	Establishment success and crop growth effects of an arbuscular mycorrhizal fungus inoculated into Swiss corn fields. Agriculture, Ecosystems and Environment, 2019, 273, 13-24.	5.3	43
8	Strategies for Environmentally Sound Soil Ecological Engineering: A Reply to Machado et al Trends in Ecology and Evolution, 2017, 32, 10-12.	8.7	6
9	Combined Field Inoculations of Pseudomonas Bacteria, Arbuscular Mycorrhizal Fungi, and Entomopathogenic Nematodes and their Effects on Wheat Performance. Frontiers in Plant Science, 2017, 8, 1809.	3.6	45
10	Highâ€resolution community profiling of arbuscular mycorrhizal fungi. New Phytologist, 2016, 212, 780-791.	7.3	104
11	An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. Trends in Ecology and Evolution, 2016, 31, 440-452.	8.7	879
12	Mycorrhizal effects on nutrient cycling, nutrient leaching and N2O production in experimental grassland. Soil Biology and Biochemistry, 2015, 80, 283-292.	8.8	130
13	The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends in Plant Science, 2015, 20, 283-290.	8.8	242
14	Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. Journal of Applied Ecology, 2015, 52, 228-239.	4.0	180
15	Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5266-5270.	7.1	1,578
16	Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil. ISME Journal, 2014, 8, 1336-1345.	9.8	156