## Quentin Barraud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7609451/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Wireless closed-loop optogenetics across the entire dorsoventral spinal cord in mice. Nature<br>Biotechnology, 2022, 40, 198-208.                                                                                                                | 17.5 | 48        |
| 2  | Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nature Medicine, 2022, 28, 260-271.                                                                                      | 30.7 | 174       |
| 3  | Preclinical upper limb neurorobotic platform to assess, rehabilitate, and develop therapies. Science Robotics, 2022, 7, eabk2378.                                                                                                                | 17.6 | 7         |
| 4  | Epidural electrical stimulation of the cervical dorsal roots restores voluntary upper limb control in paralyzed monkeys. Nature Neuroscience, 2022, 25, 924-934.                                                                                 | 14.8 | 30        |
| 5  | Cell type prioritization in single-cell data. Nature Biotechnology, 2021, 39, 30-34.                                                                                                                                                             | 17.5 | 96        |
| 6  | Introducing a biomimetic coating for graphene neuroelectronics: toward in-vivo applications.<br>Biomedical Physics and Engineering Express, 2021, 7, 015006.                                                                                     | 1.2  | 3         |
| 7  | Neuroprosthetic baroreflex controls haemodynamics after spinal cord injury. Nature, 2021, 590, 308-314.                                                                                                                                          | 27.8 | 96        |
| 8  | Recruitment of upper-limb motoneurons with epidural electrical stimulation of the cervical spinal cord. Nature Communications, 2021, 12, 435.                                                                                                    | 12.8 | 92        |
| 9  | Multi-pronged neuromodulation intervention engages the residual motor circuitry to facilitate walking in a rat model of spinal cord injury. Nature Communications, 2021, 12, 1925.                                                               | 12.8 | 35        |
| 10 | MRI ompatible and Conformal Electrocorticography Grids for Translational Research. Advanced Science, 2021, 8, 2003761.                                                                                                                           | 11.2 | 33        |
| 11 | Meeting Proceedings for SCI 2020: Launching a Decade of Disruption in Spinal Cord Injury Research.<br>Journal of Neurotrauma, 2021, 38, 1251-1266.                                                                                               | 3.4  | 14        |
| 12 | Prioritization of cell types responsive to biological perturbations in single-cell data with Augur.<br>Nature Protocols, 2021, 16, 3836-3873.                                                                                                    | 12.0 | 22        |
| 13 | Elezanumab, a human anti-RGMa monoclonal antibody, promotes neuroprotection, neuroplasticity,<br>and neurorecovery following a thoracic hemicompression spinal cord injury in non-human primates.<br>Neurobiology of Disease, 2021, 155, 105385. | 4.4  | 14        |
| 14 | Enabling reproducible re-analysis of single-cell data. Genome Biology, 2021, 22, 215.                                                                                                                                                            | 8.8  | 9         |
| 15 | Confronting false discoveries in single-cell differential expression. Nature Communications, 2021, 12, 5692.                                                                                                                                     | 12.8 | 332       |
| 16 | Engineering spinal cord repair. Current Opinion in Biotechnology, 2021, 72, 48-53.                                                                                                                                                               | 6.6  | 18        |
| 17 | Optogenetic Interrogation of Circuits Following Neurotrauma. Frontiers in Molecular Neuroscience, 2021, 14, 803856.                                                                                                                              | 2.9  | 0         |
| 18 | Structured nanoscale metallic glass fibres with extreme aspect ratios. Nature Nanotechnology, 2020, 15, 875-882.                                                                                                                                 | 31.5 | 59        |

| #  | Article                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Guidelines to Study and Develop Soft Electrode Systems for Neural Stimulation. Neuron, 2020, 108, 238-258.                                                                        | 8.1  | 49        |
| 20 | Soft, Implantable Bioelectronic Interfaces for Translational Research. Advanced Materials, 2020, 32, e1906512.                                                                    | 21.0 | 67        |
| 21 | Soft Printable Electrode Coating for Neural Interfaces. ACS Applied Bio Materials, 2020, 3, 4388-4397.                                                                            | 4.6  | 33        |
| 22 | Monolayer Graphene Coating of Intracortical Probes for Long‣asting Neural Activity Monitoring.<br>Advanced Healthcare Materials, 2019, 8, e1801331.                               | 7.6  | 25        |
| 23 | Neurorestorative interventions involving bioelectronic implants after spinal cord injury.<br>Bioelectronic Medicine, 2019, 5, 10.                                                 | 2.3  | 22        |
| 24 | Low-Dimensional Motor Cortex Dynamics Preserve Kinematics Information During Unconstrained Locomotion in Nonhuman Primates. Frontiers in Neuroscience, 2019, 13, 1046.            | 2.8  | 14        |
| 25 | Spinal cord repair: advances in biology and technology. Nature Medicine, 2019, 25, 898-908.                                                                                       | 30.7 | 323       |
| 26 | Cbp-dependent histone acetylation mediates axon regeneration induced by environmental enrichment in rodent spinal cord injury models. Science Translational Medicine, 2019, 11, . | 12.4 | 79        |
| 27 | Advantages of soft subdural implants for the delivery of electrochemical neuromodulation therapies to the spinal cord. Journal of Neural Engineering, 2018, 15, 026024.           | 3.5  | 41        |
| 28 | Closed-loop control of trunk posture improves locomotion through the regulation of leg proprioceptive feedback after spinal cord injury. Scientific Reports, 2018, 8, 76.         | 3.3  | 30        |
| 29 | Cortico–reticulo–spinal circuit reorganization enables functional recovery after severe spinal cord contusion. Nature Neuroscience, 2018, 21, 576-588.                            | 14.8 | 228       |
| 30 | Selective Recruitment of Arm Motoneurons in Nonhuman Primates Using Epidural Electrical Stimulation of the Cervical Spinal Cord. , 2018, 2018, 1424-1427.                         |      | 10        |
| 31 | Long-term functionality of a soft electrode array for epidural spinal cord stimulation in a minipig model. , 2018, 2018, 1432-1435.                                               |      | 8         |
| 32 | Targeted neurotechnology restores walking in humans with spinal cord injury. Nature, 2018, 563, 65-71.                                                                            | 27.8 | 708       |
| 33 | Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nature Neuroscience, 2018, 21, 1728-1741.                 | 14.8 | 247       |
| 34 | Configuration of electrical spinal cord stimulation through real-time processing of gait kinematics.<br>Nature Protocols, 2018, 13, 2031-2061.                                    | 12.0 | 96        |
| 35 | Reducing neuronal inhibition restores locomotion in paralysed mice. Nature, 2018, 561, 317-318.                                                                                   | 27.8 | 2         |
| 36 | Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature, 2018, 561, 396-400.                                                             | 27.8 | 341       |

| #  | Article                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Inhaling xenon ameliorates <scp>l</scp> â€dopaâ€induced dyskinesia in experimental parkinsonism.<br>Movement Disorders, 2018, 33, 1632-1642.                              | 3.9  | 15        |
| 38 | Brain-controlled modulation of spinal circuits improves recovery from spinal cord injury. Nature Communications, 2018, 9, 3015.                                           | 12.8 | 108       |
| 39 | Rehabilitative Soft Exoskeleton for Rodents. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 107-118.                                       | 4.9  | 12        |
| 40 | Long-term usability and bio-integration of polyimide-based intra-neural stimulating electrodes.<br>Biomaterials, 2017, 122, 114-129.                                      | 11.4 | 132       |
| 41 | Biodegradable scaffolds promote tissue remodeling and functional improvement in non-human primates with acute spinal cord injury. Biomaterials, 2017, 123, 63-76.         | 11.4 | 75        |
| 42 | A multidirectional gravity-assist algorithm that enhances locomotor control in patients with stroke<br>or spinal cord injury. Science Translational Medicine, 2017, 9, .  | 12.4 | 42        |
| 43 | A Computational Framework for the Design of Spinal Neuroprostheses. Biosystems and Biorobotics, 2017, , 23-27.                                                            | 0.3  | 0         |
| 44 | Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors. Journal of Neuroscience, 2016, 36, 10440-10455.                                           | 3.6  | 60        |
| 45 | A brain–spine interface alleviating gait deficits after spinal cord injury in primates. Nature, 2016, 539,<br>284-288.                                                    | 27.8 | 492       |
| 46 | Materials and technologies for soft implantable neuroprostheses. Nature Reviews Materials, 2016, 1, .                                                                     | 48.7 | 485       |
| 47 | A neurorobotic platform for locomotor prosthetic development in rats and mice. Journal of Neural Engineering, 2016, 13, 026007.                                           | 3.5  | 12        |
| 48 | Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury. Nature Medicine, 2016, 22, 138-145.                    | 30.7 | 274       |
| 49 | Mechanisms Underlying the Neuromodulation of Spinal Circuits for Correcting Gait and Balance<br>Deficits after Spinal Cord Injury. Neuron, 2016, 89, 814-828.             | 8.1  | 144       |
| 50 | Influence of Spinal Cord Integrity on Gait Control in Human Spinal Cord Injury. Neurorehabilitation and Neural Repair, 2016, 30, 562-572.                                 | 2.9  | 23        |
| 51 | Electronic dura mater for long-term multimodal neural interfaces. Science, 2015, 347, 159-163.                                                                            | 12.6 | 845       |
| 52 | Neuroprosthetic technologies to augment the impact of neurorehabilitation after spinal cord injury.<br>Annals of Physical and Rehabilitation Medicine, 2015, 58, 232-237. | 2.3  | 26        |
| 53 | Defining Ecological Strategies in Neuroprosthetics. Neuron, 2015, 86, 29-33.                                                                                              | 8.1  | 27        |
| 54 | Lack of additive role of ageing in nigrostriatal neurodegeneration triggered by α-synuclein overexpression. Acta Neuropathologica Communications, 2015, 3, 46.            | 5.2  | 88        |

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates. Science Translational Medicine, 2015, 7, 302ra134. | 12.4 | 148       |
| 56 | Research Update: Platinum-elastomer mesocomposite as neural electrode coating. APL Materials, 2015, 3, .                                                                                             | 5.1  | 29        |
| 57 | Muscle Spindle Feedback Directs Locomotor Recovery and Circuit Reorganization after Spinal Cord<br>Injury. Cell, 2014, 159, 1626-1639.                                                               | 28.9 | 257       |
| 58 | Wireless Neurosensor for Full-Spectrum Electrophysiology Recordings during Free Behavior.<br>Neuron, 2014, 84, 1170-1182.                                                                            | 8.1  | 200       |
| 59 | Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury. Science Translational Medicine, 2014, 6, 255ra133.                        | 12.4 | 170       |
| 60 | Corticospinal neuroprostheses to restore locomotion after spinal cord injury. Neuroscience<br>Research, 2014, 78, 21-29.                                                                             | 1.9  | 47        |
| 61 | D1 receptor agonist improves sleep–wake parameters in experimental parkinsonism. Neurobiology of<br>Disease, 2014, 63, 20-24.                                                                        | 4.4  | 37        |
| 62 | Personalized Neuroprosthetics. Science Translational Medicine, 2013, 5, 210rv2.                                                                                                                      | 12.4 | 141       |
| 63 | Soft robot for gait rehabilitation of spinalized rodents. , 2013, , .                                                                                                                                |      | 23        |
| 64 | Brain–machine interface: closer to therapeutic reality?. Lancet, The, 2013, 381, 515-517.                                                                                                            | 13.7 | 32        |
| 65 | Multisystem Neuroprosthetic Training Improves Bladder Function After Severe Spinal Cord Injury.<br>Journal of Urology, 2013, 189, 747-753.                                                           | 0.4  | 28        |
| 66 | A Computational Model for Epidural Electrical Stimulation of Spinal Sensorimotor Circuits. Journal of Neuroscience, 2013, 33, 19326-19340.                                                           | 3.6  | 320       |
| 67 | Undirected compensatory plasticity contributes to neuronal dysfunction after severe spinal cord injury. Brain, 2013, 136, 3347-3361.                                                                 | 7.6  | 102       |
| 68 | A real-time platform for studying the modulatory capacity of epidural stimulation after spinal cord injury. , 2013, , .                                                                              |      | 0         |
| 69 | Methods for Functional Assessment After C7 Spinal Cord Hemisection in the Rhesus Monkey.<br>Neurorehabilitation and Neural Repair, 2012, 26, 556-569.                                                | 2.9  | 43        |
| 70 | Response to Comment on "Restoring Voluntary Control of Locomotion After Paralyzing Spinal Cord<br>Injury― Science, 2012, 338, 328-328.                                                               | 12.6 | 11        |
| 71 | Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders. Nature Medicine, 2012, 18, 1142-1147.                                                   | 30.7 | 94        |
| 72 | Animal Models of Neurologic Disorders: A Nonhuman Primate Model of Spinal Cord Injury.<br>Neurotherapeutics, 2012, 9, 380-392.                                                                       | 4.4  | 80        |

| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Restoring Voluntary Control of Locomotion after Paralyzing Spinal Cord Injury. Science, 2012, 336, 1182-1185.                                                                              | 12.6 | 701       |
| 74 | Multi-system neurorehabilitative strategies to restore motor functions following severe spinal cord injury. Experimental Neurology, 2012, 235, 100-109.                                    | 4.1  | 57        |
| 75 | Controlling Specific Locomotor Behaviors through Multidimensional Monoaminergic Modulation of Spinal Circuitries. Journal of Neuroscience, 2011, 31, 9264-9278.                            | 3.6  | 132       |
| 76 | Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nature<br>Neuroscience, 2010, 13, 1505-1510.                                               | 14.8 | 346       |
| 77 | Neuroanatomical Study of the A11 Diencephalospinal Pathway in the Non-Human Primate. PLoS ONE, 2010, 5, e13306.                                                                            | 2.5  | 82        |
| 78 | Metabolic activity of the subthalamic nucleus in a primate model of L-Dopa-unresponsive parkinsonism. Neurological Research, 2010, 32, 1050-1053.                                          | 1.3  | 2         |
| 79 | Transformation of nonfunctional spinal circuits into functional states after the loss of brain input.<br>Nature Neuroscience, 2009, 12, 1333-1342.                                         | 14.8 | 620       |
| 80 | Sleep disorders in Parkinson's disease: The contribution of the MPTP non-human primate model.<br>Experimental Neurology, 2009, 219, 574-582.                                               | 4.1  | 124       |
| 81 | Combinatory Electrical and Pharmacological Neuroprosthetic Interfaces to Regain Motor Function After Spinal Cord Injury. IEEE Transactions on Biomedical Engineering, 2009, 56, 2707-2711. | 4.2  | 42        |
| 82 | Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nature Medicine, 2008, 14, 69-74.                                       | 30.7 | 690       |
| 83 | Training locomotor networks. Brain Research Reviews, 2008, 57, 241-254.                                                                                                                    | 9.0  | 268       |
| 84 | Step Training Reinforces Specific Spinal Locomotor Circuitry in Adult Spinal Rats. Journal of Neuroscience, 2008, 28, 7370-7375.                                                           | 3.6  | 157       |
| 85 | Epidural Stimulation Induced Modulation of Spinal Locomotor Networks in Adult Spinal Rats. Journal of Neuroscience, 2008, 28, 6022-6029.                                                   | 3.6  | 147       |
| 86 | Stance- and Locomotion-Dependent Processing of Vibration-Induced Proprioceptive Inflow From Multiple Muscles in Humans. Journal of Neurophysiology, 2007, 97, 772-779.                     | 1.8  | 87        |
| 87 | Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans?. Nature Medicine, 2007, 13, 561-566.                                         | 30.7 | 403       |
| 88 | Spinal cord reflexes induced by epidural spinal cord stimulation in normal awake rats. Journal of Neuroscience Methods, 2006, 157, 253-263.                                                | 2.5  | 134       |
| 89 | Plasticity of Spinal Cord Reflexes After a Complete Transection in Adult Rats: Relationship to Stepping Ability. Journal of Neurophysiology, 2006, 96, 1699-1710.                          | 1.8  | 189       |
| 90 | Kinematic and EMG Determinants in Quadrupedal Locomotion of a Non-Human Primate (Rhesus).<br>Journal of Neurophysiology, 2005, 93, 3127-3145.                                              | 1.8  | 135       |

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Performance of locomotion and foot grasping following a unilateral thoracic corticospinal tract<br>lesion in monkeys (Macaca mulatta). Brain, 2005, 128, 2338-2358. | 7.6 | 121       |