
Andrea Cimarelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7608378/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ISG20: an enigmatic antiviral RNase targeting multiple viruses. FEBS Open Bio, 2022, 12, 1096-1111.	2.3	22
2	A novel domain within the CIL regulates egress of IFITM3 from the Golgi and reveals a regulatory role of IFITM3 on the secretory pathway. Life Science Alliance, 2022, 5, e202101174.	2.8	3
3	Membrane Interference Against HIV-1 by Intrinsic Antiviral Factors: The Case of IFITMs. Cells, 2021, 10, 1171.	4.1	14
4	Functional Heterogeneity of Mammalian IFITM Proteins against HIV-1. Journal of Virology, 2021, 95, e0043921.	3.4	8
5	DCINN, an automated and highly-flexible pipeline for the detection of genetic innovations on protein-coding genes. Nucleic Acids Research, 2020, 48, e103-e103.	14.5	19
6	The interferon stimulated gene 20 protein (ISG20) is an innate defense antiviral factor that discriminates self versus non-self translation. PLoS Pathogens, 2019, 15, e1008093.	4.7	50
7	The DNA damage induced by the Cytosine Deaminase APOBEC3A Leads to the production of ROS. Scientific Reports, 2019, 9, 4714.	3.3	10
8	Functional Mapping of Regions Involved in the Negative Imprinting of Virion Particle Infectivity and in Target Cell Protection by Interferon-Induced Transmembrane Protein 3 against HIV-1. Journal of Virology, 2019, 93, .	3.4	20
9	Mannoside Glycolipid Conjugates Display Antiviral Activity Against Ebola Virus. Journal of Infectious Diseases, 2018, 218, S666-S671.	4.0	0
10	Leucine-rich repeat-containing G protein–coupled receptor 4 facilitates vesicular stomatitis virus infection by binding vesicular stomatitis virus glycoprotein. Journal of Biological Chemistry, 2017, 292, 16527-16538.	3.4	19
11	Interference with the production of infectious viral particles and bimodal inhibition of replication are broadly conserved antiviral properties of IFITMs. PLoS Pathogens, 2017, 13, e1006610.	4.7	56
12	A Novel Entry/Uncoating Assay Reveals the Presence of at Least Two Species of Viral Capsids During Synchronized HIV-1 Infection. PLoS Pathogens, 2016, 12, e1005897.	4.7	28
13	Identification of a New Ribonucleoside Inhibitor of Ebola Virus Replication. Viruses, 2015, 7, 6233-6240.	3.3	82
14	The Frequency of Cytidine Editing of Viral DNA Is Differentially Influenced by Vpx and Nucleosides during HIV-1 or SIVMAC Infection of Dendritic Cells. PLoS ONE, 2015, 10, e0140561.	2.5	1
15	The Susceptibility of Primate Lentiviruses to Nucleosides and Vpx during Infection of Dendritic Cells Is Regulated by CA. Journal of Virology, 2015, 89, 4030-4034.	3.4	4
16	Impact of the MRN Complex on Adeno-Associated Virus Integration and Replication during Coinfection with Herpes Simplex Virus 1. Journal of Virology, 2015, 89, 6824-6834.	3.4	11
17	IFITM proteins are incorporated onto HIV-1 virion particles and negatively imprint their infectivity. Retrovirology, 2014, 11, 103.	2.0	114
18	Reduction of death receptor 5 expression and apoptosis of CD4+ T cells from HIV controllers. Clinical Immunology, 2014, 155, 17-26.	3.2	7

ANDREA CIMARELLI

#	Article	IF	CITATIONS
19	SIVSM/HIV-2 Vpx Proteins: Function and Uses in the Infection of Primary Myeloid Cells. Methods in Molecular Biology, 2014, 1087, 159-165.	0.9	2
20	HIV-1 Reverse Transcription. Methods in Molecular Biology, 2014, 1087, 55-70.	0.9	7
21	Evidence for a Different Susceptibility of Primate Lentiviruses to Type I Interferons. Journal of Virology, 2013, 87, 2587-2596.	3.4	15
22	Tailored HIV-1 Vectors for Genetic Modification of Primary Human Dendritic Cells and Monocytes. Journal of Virology, 2013, 87, 234-242.	3.4	13
23	Functional Analysis of the Relationship between Vpx and the Restriction Factor SAMHD1. Journal of Biological Chemistry, 2012, 287, 41210-41217.	3.4	31
24	Different effects of the TAR structure on HIV-1 and HIV-2 genomic RNA translation. Nucleic Acids Research, 2012, 40, 2653-2667.	14.5	38
25	Simian immunodeficiency virus-Vpx for improving integrase defective lentiviral vector-based vaccines. Retrovirology, 2012, 9, 69.	2.0	21
26	The Transcription Profile of Tax-3 Is More Similar to Tax-1 than Tax-2: Insights into HTLV-3 Potential Leukemogenic Properties. PLoS ONE, 2012, 7, e41003.	2.5	28
27	Functional mechanisms of the cellular prion protein (PrPC) associated anti-HIV-1 properties. Cellular and Molecular Life Sciences, 2012, 69, 1331-1352.	5.4	20
28	A simple, versatile and efficient method to genetically modify human monocyte-derived dendritic cells with HIV-1–derived lentiviral vectors. Nature Protocols, 2011, 6, 806-816.	12.0	93
29	Molecular Insight into How HIV-1 Vpr Protein Impairs Cell Growth through Two Genetically Distinct Pathways. Journal of Biological Chemistry, 2011, 286, 23742-23752.	3.4	13
30	APOBEC3A Is a Specific Inhibitor of the Early Phases of HIV-1 Infection in Myeloid Cells. PLoS Pathogens, 2011, 7, e1002221.	4.7	171
31	The Inside Out of Lentiviral Vectors. Viruses, 2011, 3, 132-159.	3.3	63
32	Journey to the heart of macrophages: the delicate relationship between HIV-1 and a multifaceted cell type. Retrovirology, 2010, 7, 28.	2.0	1
33	Analysis of the Viral Elements Required in the Nuclear Import of HIV-1 DNA. Journal of Virology, 2010, 84, 729-739.	3.4	63
34	Implications of the Nucleocapsid and the Microenvironment in Retroviral Reverse Transcription. Viruses, 2010, 2, 939-960.	3.3	13
35	Characterization of the Behavior of Functional Viral Genomes during the Early Steps of Human Immunodeficiency Virus Type 1 Infection. Journal of Virology, 2009, 83, 7524-7535.	3.4	52
36	Improved Adenovirus Type 5 Vector-Mediated Transduction of Resistant Cells by Piggybacking on Coxsackie B-Adenovirus Receptor-Pseudotyped Baculovirus. Journal of Virology, 2009, 83, 6048-6066.	3.4	14

ANDREA CIMARELLI

#	Article	IF	CITATIONS
37	Characterization of Simian Immunodeficiency Virus SIV _{SM} /Human Immunodeficiency Virus Type 2 Vpx Function in Human Myeloid Cells. Journal of Virology, 2008, 82, 12335-12345.	3.4	120
38	Characterization of the Early Steps of Infection of Primary Blood Monocytes by Human Immunodeficiency Virus Type 1. Journal of Virology, 2008, 82, 6557-6565.	3.4	67
39	SIVSM/HIV-2 Vpx proteins promote retroviral escape from a proteasome-dependent restriction pathway present in human dendritic cells. Retrovirology, 2007, 4, 2.	2.0	177
40	Transduction of Nondividing Human Macrophages with Gammaretrovirus-Derived Vectors. Journal of Virology, 2006, 80, 1152-1159.	3.4	42
41	Targeting the Assembly of the Human Immunodeficiency Virus Type I. Current Pharmaceutical Design, 2004, 10, 3725-3739.	1.9	29
42	Heterologous Human Immunodeficiency Virus Type 1 Lentiviral Vectors Packaging a Simian Immunodeficiency Virus-Derived Genome Display a Specific Postentry Transduction Defect in Dendritic Cells. Journal of Virology, 2003, 77, 9295-9304.	3.4	39
43	Specific Incorporation of Heat Shock Protein 70 Family Members into Primate Lentiviral Virions. Journal of Virology, 2002, 76, 4666-4670.	3.4	125
44	Context-Dependent Phenotype of a Human Immunodeficiency Virus Type 1 Nucleocapsid Mutation. Journal of Virology, 2001, 75, 7193-7197.	3.4	7
45	HTLV-II down-regulates HIV-1 replication in IL-2–stimulated primary PBMC of coinfected individuals through expression of MIP-11±. Blood, 2000, 95, 2760-2769.	1.4	43
46	Rescue of Multiple Viral Functions by a Second-Site Suppressor of a Human Immunodeficiency Virus Type 1 Nucleocapsid Mutation. Journal of Virology, 2000, 74, 4273-4283.	3.4	27
47	Human Immunodeficiency Virus Type 1 Virion Density Is Not Determined by Nucleocapsid Basic Residues. Journal of Virology, 2000, 74, 6734-6740.	3.4	39
48	Basic Residues in Human Immunodeficiency Virus Type 1 Nucleocapsid Promote Virion Assembly via Interaction with RNA. Journal of Virology, 2000, 74, 3046-3057.	3.4	177
49	Human Immunodeficiency Virus Type 1 Gag Polyprotein Multimerization Requires the Nucleocapsid Domain and RNA and Is Promoted by the Capsid-Dimer Interface and the Basic Region of Matrix Protein. Journal of Virology, 1999, 73, 8527-8540.	3.4	168
50	Translation Elongation Factor 1-Alpha Interacts Specifically with the Human Immunodeficiency Virus Type 1 Gag Polyprotein. Journal of Virology, 1999, 73, 5388-5401.	3.4	148
51	Clonal Expansion of Human T-Cell Leukemia Virus Type II in Patients with High Proviral Load. Virology, 1996, 223, 362-364.	2.4	29
52	Cellular Tropism of Human T-Cell Leukemia Virus Type II Is Enlarged to B Lymphocytes in Patients with High Proviral Load. Virology, 1995, 206, 1126-1128.	2.4	29
53	Utilization of a DNA enzyme immunoassay for the detection of proviral DNA of human immunodeficiency virus type 1 by polymerase chain reaction. Clinical and Diagnostic Virology, 1995, 3, 155-164.	1.7	2