
Thomas Seidl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7607214/publications.pdf Version: 2024-02-01

THOMAS SEIDI

#	Article	IF	CITATIONS
1	Repertoire selection by pre-B-cell receptors and B-cell receptors, and genetic control of B-cell development from immature to mature BÂcells. Immunological Reviews, 2000, 175, 33-46.	6.0	209
2	Activated Murine B Lymphocytes and Dendritic Cells Produce a Novel CC Chemokine which Acts Selectively on Activated T Cells. Journal of Experimental Medicine, 1998, 188, 451-463.	8.5	145
3	Functional characterization of CD4+ T cells in aplastic anemia. Blood, 2012, 119, 2033-2043.	1.4	140
4	Evidence for reduced B-cell progenitors in early (low-risk) myelodysplastic syndrome. Blood, 2005, 106, 2982-2991.	1.4	127
5	Deep phenotyping of Tregs identifies an immune signature for idiopathic aplastic anemia and predicts response to treatment. Blood, 2016, 128, 1193-1205.	1.4	117
6	Expansion of myeloid derived suppressor cells correlates with number of T regulatory cells and disease progression in myelodysplastic syndrome. OncoImmunology, 2016, 5, e1062208.	4.6	97
7	Changes in Gene Expression Profiles in Developing B Cells of Murine Bone Marrow. Genome Research, 2002, 12, 98-111.	5.5	92
8	The effects of 5-azacytidine on the function and number of regulatory T cells and T-effectors in myelodysplastic syndrome. Haematologica, 2013, 98, 1196-1205.	3.5	91
9	Molecular Signatures of Self-Renewal, Differentiation, and Lineage Choice in Multipotential Hemopoietic Progenitor Cells In Vitro. Molecular and Cellular Biology, 2004, 24, 741-756.	2.3	87
10	Profound effect of normalization on detection of differentially expressed genes in oligonucleotide microarray data analysis. Genome Biology, 2002, 3, research0033.1.	9.6	76
11	<scp>JAK</scp> inhibition induces silencing of T Helper cytokine secretion and a profound reduction in T regulatory cells. British Journal of Haematology, 2015, 171, 60-73.	2.5	73
12	Mouse pre-immunocytes as non-proliferating multipotent precursors of macrophages, interferon-producing cells, CD8α+ and CD8I±- dendritic cells. European Journal of Immunology, 2001, 31, 3403-3412.	2.9	71
13	SF3B1 mutant MDS-initiating cells may arise from the haematopoietic stem cell compartment. Nature Communications, 2015, 6, 10004.	12.8	68
14	Spliceosome mutations exhibit specific associations with epigenetic modifiers and proto-oncogenes mutated in myelodysplastic syndrome. Haematologica, 2013, 98, 1058-1066.	3.5	67
15	Rules for Gene Usage Inferred from a Comparison of Large-Scale Gene Expression Profiles of T and B Lymphocyte Development. Journal of Immunology, 2003, 170, 1339-1353.	0.8	52
16	Stressâ€activated dendritic cells interact with CD4 ⁺ T cells to elicit homeostatic memory. European Journal of Immunology, 2010, 40, 1628-1638.	2.9	33
17	Mucosal immunization in macaques upregulates the innate APOBEC 3G anti-viral factor in CD4+ memory T cells. Vaccine, 2009, 27, 870-881.	3.8	28
18	RPL27A is a target of miR-595 and may contribute to the myelodysplastic phenotype through ribosomal dysgenesis. Oncotarget, 2016, 7, 47875-47890.	1.8	19

THOMAS SEIDL

#	Article	IF	CITATIONS
19	The VpreB protein of the surrogate light-chain can pair with some μ heavy-chains in the absence of the λ 5 protein. European Journal of Immunology, 2001, 31, 1999-2006.	2.9	18
20	The effect of allogeneic <i>in vitro</i> stimulation and <i>in vivo</i> immunization on memory CD4 ⁺ Tâ€cell APOBEC3G expression and HIVâ€l infectivity. European Journal of Immunology, 2009, 39, 1956-1965.	2.9	18
21	B ell agonists upâ€regulate AID and APOBEC3G deaminases, which induce IgA and IgG class antibodies and antiâ€viral function. Immunology, 2012, 135, 207-215.	4.4	14
22	The melanocortin receptor agonist NDPâ€MSH impairs the allostimulatory function of dendritic cells. Immunology, 2010, 129, 610-619.	4.4	9
23	JAK Inhibition Reduces CD25 high CD27+ FOXp3+ T Regulatory Cells and Causes a Silencing Of T Effector Cells In Patients With Myeloproliferative Neoplasms Whilst Promoting a TH17 Phenotype. Blood, 2013, 122, 4092-4092.	1.4	8
24	Developmental markers of B cells are superior to those of T cells for identification of stages with distinct gene expression profiles. Journal of Leukocyte Biology, 2003, 74, 602-610.	3.3	2
25	5-Azacytidine Specifically Depletes Regulatory T Cells (Tregs) in Myelodysplastic Syndrome (MDS) Patients. Blood, 2011, 118, 787-787.	1.4	2
26	Functional Characterization of CD4+ T-Cells in Aplastic Anemia (AA). Blood, 2011, 118, 1340-1340.	1.4	1
27	Expansion of CD141int Dendritic Cells in Myelodysplastic Syndrome (MDS). Blood, 2012, 120, 3856-3856.	1.4	0
28	SF3B1 Mutant Clones From Patients With Refractory Anaemia With Ringed Sideroblasts (RARS) Originate From The Early Haematopoietic Stem Cells and Maintain Their Engraftment Potential. Blood, 2013, 122, 262-262.	1.4	0
29	Myeloid Derived Suppressor Cell Expansion Correlates With Increased regulatory T Cells In Myelodysplastic Syndrome, Blood, 2013, 122, 2766-2766	1.4	Ο