Li Rong Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7606731/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lonic-liquid-assisted synthesis of metal single-atom catalysts for benzene oxidation to phenol. Science China Materials, 2022, 65, 163-169.	6.3	13
2	Ambient Electrochemical Nitrogen Fixation over a Bifunctional Mo–(O–C ₂) ₄ Site Catalyst. Journal of Physical Chemistry C, 2022, 126, 965-973.	3.1	15
3	Deeply self-reconstructing CoFe(H3O)(PO4)2 to low-crystalline Fe0.5Co0.5OOH with Fe3+–O–Fe3+ motifs for oxygen evolution reaction. Applied Catalysis B: Environmental, 2022, 304, 120986.	20.2	36
4	Ultra-small Ru nanoparticles embedded on Fe–Ni(OH) ₂ nanosheets for efficient water splitting at a large current density with long-term stability of 680 hours. Journal of Materials Chemistry A, 2022, 10, 4817-4824.	10.3	46
5	Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide. Energy and Environmental Science, 2022, 15, 760-770.	30.8	133
6	Site‧pecific Axial Oxygen Coordinated FeN ₄ Active Sites for Highly Selective Electroreduction of Carbon Dioxide. Advanced Functional Materials, 2022, 32, .	14.9	38
7	Spatial porosity design of Fe–N–C catalysts for high power density PEM fuel cells and detection of water saturation of the catalyst layer by a microwave method. Journal of Materials Chemistry A, 2022, 10, 7764-7772.	10.3	11
8	Efficient ambient ammonia synthesis by Lewis acid pair over cobalt single atom catalyst with suppressed proton reduction. Journal of Materials Chemistry A, 2022, 10, 8432-8439.	10.3	11
9	Oxygen vacancy content drives self-reduction and anti-thermal quenching. Journal of Materials Chemistry C, 2022, 10, 4317-4326.	5.5	20
10	Intense Luminescence and Good Thermal Stability in a Mn ²⁺ -Activated Mg-Based Phosphor with Self-Reduction. Inorganic Chemistry, 2022, 61, 5495-5501.	4.0	13
11	The performance of an atomically dispersed oxygen reduction catalyst prepared by \hat{I}^3 -CD-MOF integration with FePc. Nanoscale Advances, 2022, 4, 2171-2179.	4.6	2
12	Ligand Charge Donation–Acquisition Balance: A Unique Strategy to Boost Single Pt Atom Catalyst Mass Activity toward the Hydrogen Evolution Reaction. ACS Catalysis, 2022, 12, 5970-5978.	11.2	18
13	Platinum nanoclusters by atomic layer deposition on three-dimensional TiO2 nanotube array for efficient hydrogen evolution. Materials Today Energy, 2022, 27, 101042.	4.7	8
14	Iron atom–cluster interactions increase activity and improve durability in Fe–N–C fuel cells. Nature Communications, 2022, 13, .	12.8	159
15	High-content atomically distributed W(<scp>v</scp> , <scp>vi</scp>) on FeCo layered double hydroxide with high oxygen evolution reaction activity. Chemical Communications, 2022, 58, 7678-7681.	4.1	5
16	Integrating single Co sites into crystalline covalent triazine frameworks for photoreduction of CO ₂ . Chemical Communications, 2022, 58, 8121-8124.	4.1	13
17	Electron-Deficient Pd clusters induced by spontaneous reduction of support defect for selective phenol hydrogenation. Chemical Engineering Science, 2022, 260, 117867.	3.8	2
18	3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Applied Catalysis B: Environmental, 2021, 280, 119411.	20.2	324

#	Article	IF	CITATIONS
19	Anomalous self-optimization of sulfate ions for boosted oxygen evolution reaction. Science Bulletin, 2021, 66, 553-561.	9.0	30
20	<i>Operando</i> X-ray spectroscopy visualizing the chameleon-like structural reconstruction on an oxygen evolution electrocatalyst. Energy and Environmental Science, 2021, 14, 906-915.	30.8	93
21	Unraveling the real active sites of an amorphous silica–alumina-supported nickel catalyst for highly efficient ethylene oligomerization. Catalysis Science and Technology, 2021, 11, 1510-1518.	4.1	16
22	Coordination Number Regulation of Molybdenum Single-Atom Nanozyme Peroxidase-like Specificity. CheM, 2021, 7, 436-449.	11.7	216
23	Engineering defect-rich Fe-doped NiO coupled Ni cluster nanotube arrays with excellent oxygen evolution activity. Applied Catalysis B: Environmental, 2021, 285, 119809.	20.2	103
24	Highly durable Cu–N–C active sites towards efficient oxygen reduction for zinc-air battery: Carbon matrix effect, reaction mechanism and pathways. Journal of Alloys and Compounds, 2021, 857, 158321.	5.5	12
25	Self-supported bifunctional electrocatalysts with Ni nanoparticles encapsulated in vertical N-doped carbon nanotube for efficient overall water splitting. Chemical Engineering Journal, 2021, 413, 127531.	12.7	43
26	N coupling with S-coordinated Ru nanoclusters for highly efficient hydrogen evolution in alkaline media. Journal of Materials Chemistry A, 2021, 9, 12659-12669.	10.3	26
27	Direct synthesis of 1T-phase MoS ₂ nanosheets with abundant sulfur-vacancies through (CH ₃) ₄ N ⁺ cation-intercalation for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 13996-14003.	10.3	17
28	A rational design of an efficient counter electrode with the Co/Co ₁ P ₁ N ₃ atomic interface for promoting catalytic performance. Materials Chemistry Frontiers, 2021, 5, 3085-3092.	5.9	8
29	N-Induced Electron Transfer Effect on Low-Temperature Activation of Nitrogen for Ammonia Synthesis over Co-Based Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 1529-1539.	6.7	11
30	Solution-processable nickel–chromium ternary oxide as an efficient hole transport layer for inverted planar perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 21792-21798.	10.3	8
31	Quasi-double-star nickel and iron active sites for high-efficiency carbon dioxide electroreduction. Energy and Environmental Science, 2021, 14, 4847-4857.	30.8	43
32	A low-valent cobalt oxide co-catalyst to boost photocatalytic water oxidation <i>via</i> enhanced hole-capturing ability. Journal of Materials Chemistry A, 2021, 9, 14786-14792.	10.3	18
33	Coordinately unsaturated O _{2c} –Ti _{5c} –O _{2c} sites promote the reactivity of Pt/TiO ₂ catalysts in the solvent-free oxidation of <i>n</i> -octanol. Catalysis Science and Technology, 2021, 11, 4898-4910.	4.1	6
34	Air atmospheric photocatalytic oxidation by ultrathin C,N-TiO ₂ nanosheets. Green Chemistry, 2021, 23, 1165-1170.	9.0	13
35	The <i>in situ</i> study of surface species and structures of oxide-derived copper catalysts for electrochemical CO ₂ reduction. Chemical Science, 2021, 12, 5938-5943.	7.4	40
36	Monomeric vanadium oxide: a very efficient species for promoting aerobic oxidative dehydrogenation of N-heterocycles. New Journal of Chemistry, 2021, 45, 431-437.	2.8	1

#	Article	IF	CITATIONS
37	Atomically Dispersed Fe–Heteroatom (N, S) Bridge Sites Anchored on Carbon Nanosheets for Promoting Oxygen Reduction Reaction. ACS Energy Letters, 2021, 6, 379-386.	17.4	167
38	Mitigating the P2–O2 transition and Na ⁺ /vacancy ordering in Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ by anion/cation dual-doping for fast and stable Na ⁺ insertion/extraction. Journal of Materials Chemistry A, 2021, 9, 10803-10811.	10.3	23
39	A novel Fe/N/C electrocatalyst prepared from a carbon-supported iron(ii) complex of macrocyclic ligands for oxygen reduction reaction. RSC Advances, 2021, 11, 8437-8443.	3.6	5
40	Identifying the Activity Origin of a Cobalt Singleâ€Atom Catalyst for Hydrogen Evolution Using Supervised Learning. Advanced Functional Materials, 2021, 31, 2100547.	14.9	93
41	Construction of Dualâ€Activeâ€6ite Copper Catalyst Containing both CuN ₃ and CuN ₄ Sites. Small, 2021, 17, e2006834.	10.0	52
42	Rational design of ultrahigh loading metal single-atoms (Co, Ni, Mo) anchored on in-situ pre-crosslinked guar gum derived N-doped carbon aerogel for efficient overall water splitting. Chemical Engineering Journal, 2021, 410, 128359.	12.7	41
43	Electrochemical Construction of Low-Crystalline CoOOH Nanosheets with Short-Range Ordered Grains to Improve Oxygen Evolution Activity. ACS Catalysis, 2021, 11, 6104-6112.	11.2	103
44	Defectâ€Induced Selfâ€Reduction and Antiâ€Thermal Quenching in NaZn(PO ₃) ₃ :Mn ²⁺ Red Phosphor. Advanced Optical Materials, 2021, 9, 2100870.	7.3	69
45	Engineering local coordination environment of atomically dispersed platinum catalyst via lattice distortion of support for efficient hydrogen evolution reaction. Materials Today Energy, 2021, 20, 100653.	4.7	19
46	Fabricating polyoxometalates-stabilized single-atom site catalysts in confined space with enhanced activity for alkynes diboration. Nature Communications, 2021, 12, 4205.	12.8	69
47	Self-assembled iron-containing mordenite monolith for carbon dioxide sieving. Science, 2021, 373, 315-320.	12.6	179
48	Sustainable production of benzene from lignin. Nature Communications, 2021, 12, 4534.	12.8	100
49	Two Types of Single-Atom FeN ₄ and FeN ₅ Electrocatalytic Active Centers on N-Doped Carbon Driving High Performance of the SA-Fe-NC Oxygen Reduction Reaction Catalyst. Chemistry of Materials, 2021, 33, 5542-5554.	6.7	59
50	Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nature Communications, 2021, 12, 4679.	12.8	226
51	Selfâ€Organized Co ₃ O ₄ â€&rCO ₃ Percolative Composites Enabling Nanosized Hole Transport Pathways for Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2106121.	14.9	18
52	Hydrogen Passivation of M–N–C (M = Fe, Co) Catalysts for Storage Stability and ORR Activity Improvements. Advanced Materials, 2021, 33, e2103600.	21.0	81
53	Interfacial Bifunctional Effect Promoted Non-Noble Cu/Fe <i>_y</i> MgO <i>_x</i> Catalysts for Selective Hydrogenation of Acetylene. ACS Catalysis, 2021, 11, 11117-11128.	11.2	24
54	Hydrothermally modified nanosheet ZSM-5 with MnOx nanoparticles and its high MTP performance. Microporous and Mesoporous Materials, 2021, 326, 111374.	4.4	6

#	Article	IF	CITATIONS
55	Dual active site tandem catalysis of metal hydroxyl oxides and single atoms for boosting oxygen evolution reaction. Applied Catalysis B: Environmental, 2021, 297, 120451.	20.2	44
56	Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteriaâ€infected wound therapy. Bioactive Materials, 2021, 6, 4389-4401.	15.6	194
57	Integration of single Co atoms and Ru nanoclusters boosts the cathodic performance of nitrogen-doped 3D graphene in lithium–oxygen batteries. Journal of Materials Chemistry A, 2021, 9, 10747-10757.	10.3	31
58	Tuning and understanding the electronic effect of Co–Mo–O sites in bifunctional electrocatalysts for ultralong-lasting rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2021, 9, 21716-21722.	10.3	16
59	Propelling polysulfide redox conversion by d-band modulation for high sulfur loading and low temperature lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 18526-18536.	10.3	39
60	Photocatalytic carbon dioxide reduction coupled with benzylamine oxidation over Zn-Bi ₂ WO ₆ microflowers. Green Chemistry, 2021, 23, 2913-2917.	9.0	19
61	Constructing single Cu–N ₃ sites for CO ₂ electrochemical reduction over a wide potential range. Green Chemistry, 2021, 23, 5461-5466.	9.0	22
62	N-Bridged Co–N–Ni: new bimetallic sites for promoting electrochemical CO ₂ reduction. Energy and Environmental Science, 2021, 14, 3019-3028.	30.8	128
63	Decreasing the coordinated N atoms in a single-atom Cu catalyst to achieve selective transfer hydrogenation of alkynes. Chemical Science, 2021, 12, 14599-14605.	7.4	20
64	Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie - International Edition, 2020, 59, 1295-1301.	13.8	344
65	Atomically dispersed ruthenium sites on whisker-like secondary microstructure of porous carbon host toward highly efficient hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 3203-3210.	10.3	20
66	Ultralong‣ife Chloride Ion Batteries Achieved by the Synergistic Contribution of Intralayer Metals in Layered Double Hydroxides. Advanced Functional Materials, 2020, 30, 1907448.	14.9	47
67	A sacrificial Zn strategy enables anchoring of metal single atoms on the exposed surface of holey 2D molybdenum carbide nanosheets for efficient electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 3071-3082.	10.3	48
68	Regulating the Coordination Environment of MOFâ€Templated Singleâ€Atom Nickel Electrocatalysts for Boosting CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 2705-2709.	13.8	404
69	Nitrogen-Stabilized Low-Valent Ni Motifs for Efficient CO ₂ Electrocatalysis. ACS Catalysis, 2020, 10, 1086-1093.	11.2	101
70	Iron-regulated NiPS for enhanced oxygen evolution efficiency. Journal of Materials Chemistry A, 2020, 8, 23580-23589.	10.3	30
71	Dynamic evolution of isolated Ru–FeP atomic interface sites for promoting the electrochemical hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 22607-22612.	10.3	36
72	BiOCl nanosheets with periodic nanochannels for high-efficiency photooxidation. Nano Energy, 2020, 78, 105340.	16.0	70

#	Article	IF	CITATIONS
73	Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Research, 2020, 13, 3082-3087.	10.4	215
74	Improved catalytic performance of Co-MOF-74 by nanostructure construction. Green Chemistry, 2020, 22, 5995-6000.	9.0	29
75	Hierarchically macro–meso–microporous metal–organic framework for photocatalytic oxidation. Chemical Communications, 2020, 56, 10754-10757.	4.1	13
76	Copper Isolated Sites on N-Doped Carbon Nanoframes for Efficient Oxygen Reduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 14030-14038.	6.7	27
77	A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nature Communications, 2020, 11, 4341.	12.8	257
78	Silica nanoparticles alleviate mercury toxicity <i>via</i> immobilization and inactivation of Hg(<scp>ii</scp>) in soybean (<i>Glycine max</i>). Environmental Science: Nano, 2020, 7, 1807-1817.	4.3	48
79	Electrocatalytically Active Feâ€(Oâ€C ₂) ₄ Singleâ€Atom Sites for Efficient Reduction of Nitrogen to Ammonia. Angewandte Chemie - International Edition, 2020, 59, 13423-13429.	13.8	161
80	Removing the barrier to water dissociation on single-atom Pt sites decorated with a CoP mesoporous nanosheet array to achieve improved hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 11246-11254.	10.3	62
81	Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Science China Materials, 2020, 63, 972-981.	6.3	74
82	Single Atoms Anchored on Cobalt-Based Catalysts Derived from Hydrogels Containing Phthalocyanine toward the Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 8338-8347.	6.7	21
83	Improved photocatalytic performance of metal–organic frameworks for CO ₂ conversion by ligand modification. Chemical Communications, 2020, 56, 7637-7640.	4.1	21
84	Electrocatalytically Active Feâ€(O ₂) ₄ Singleâ€Atom Sites for Efficient Reduction of Nitrogen to Ammonia. Angewandte Chemie, 2020, 132, 13525-13531.	2.0	23
85	NiMn-Cl Layered Double Hydroxide/Carbon Nanotube Networks for High-Performance Chloride Ion Batteries. ACS Applied Energy Materials, 2020, 3, 4559-4568.	5.1	47
86	Carbon black-supported FM–N–C (FM = Fe, Co, and Ni) single-atom catalysts synthesized by the self-catalysis of oxygen-coordinated ferrous metal atoms. Journal of Materials Chemistry A, 2020, 8, 13166-13172.	10.3	27
87	Atomically Dispersed Fe-N4 Modified with Precisely Located S for Highly Efficient Oxygen Reduction. Nano-Micro Letters, 2020, 12, 116.	27.0	99
88	Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nature Communications, 2020, 11, 3049.	12.8	537
89	Dopamine polymer derived isolated single-atom site metals/N-doped porous carbon for benzene oxidation. Chemical Communications, 2020, 56, 8916-8919.	4.1	18
90	Creation of CuO _x /ZSM-5 zeolite complex: healing defect sites and boosting acidic stability and catalytic activity. Catalysis Science and Technology, 2020, 10, 4981-4989.	4.1	8

#	Article	IF	CITATIONS
91	High-performance, long lifetime chloride ion battery using a NiFe–Cl layered double hydroxide cathode. Journal of Materials Chemistry A, 2020, 8, 12548-12555.	10.3	47
92	Engineering Isolated Mn–N ₂ C ₂ Atomic Interface Sites for Efficient Bifunctional Oxygen Reduction and Evolution Reaction. Nano Letters, 2020, 20, 5443-5450.	9.1	249
93	Highly Efficient Electroreduction of CO ₂ to C2+ Alcohols on Heterogeneous Dual Active Sites. Angewandte Chemie - International Edition, 2020, 59, 16459-16464.	13.8	148
94	CO2 controls the oriented growth of metal-organic framework with highly accessible active sites. Nature Communications, 2020, 11, 1431.	12.8	51
95	Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Research, 2020, 13, 947-951.	10.4	65
96	NiFe saponite as a new anode material for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 6539-6545.	10.3	9
97	Potential-Dependent Phase Transition and Mo-Enriched Surface Reconstruction of Î ³ -CoOOH in a Heterostructured Co-Mo ₂ C Precatalyst Enable Water Oxidation. ACS Catalysis, 2020, 10, 4411-4419.	11.2	174
98	Fabrication of NH ₂ -MIL-125 nanocrystals for high performance photocatalytic oxidation. Sustainable Energy and Fuels, 2020, 4, 2823-2830.	4.9	27
99	Immobilization of mercury by nano-elemental selenium and the underlying mechanisms in hydroponic-cultured garlic plant. Environmental Science: Nano, 2020, 7, 1115-1125.	4.3	28
100	A new concept analogous to homogeneous catalysis to construct in-situ regenerative electrodes for long-term oxygen evolution reaction. Nano Energy, 2020, 76, 105115.	16.0	14
101	Laser Irradiation in Liquid to Release Cobalt Single-Atom Sites for Efficient Electrocatalytic N2 Reduction. ACS Applied Energy Materials, 2020, 3, 6079-6086.	5.1	19
102	Multi-shelled CuO microboxes for carbon dioxide reduction to ethylene. Nano Research, 2020, 13, 768-774.	10.4	60
103	Tuning Polarity of Cu-O Bond in Heterogeneous Cu Catalyst to Promote Additive-free Hydroboration of Alkynes. CheM, 2020, 6, 725-737.	11.7	87
104	Rare Earth Single-Atom Catalysts for Nitrogen and Carbon Dioxide Reduction. ACS Nano, 2020, 14, 1093-1101.	14.6	198
105	Sequential Synthesis and Activeâ€Site Coordination Principle of Precious Metal Singleâ€Atom Catalysts for Oxygen Reduction Reaction and PEM Fuel Cells. Advanced Energy Materials, 2020, 10, 2000689.	19.5	92
106	Charge redistribution within platinum–nitrogen coordination structure to boost hydrogen evolution. Nano Energy, 2020, 73, 104739.	16.0	55
107	Interstitial oxygen defect induced mechanoluminescence in KCa(PO ₃) ₃ :Mn ²⁺ . Journal of Materials Chemistry C, 2020, 8, 6587-6594.	5.5	25
108	Delocalized electron effect on single metal sites in ultrathin conjugated microporous polymer nanosheets for boosting CO ₂ cycloaddition. Science Advances, 2020, 6, eaaz4824.	10.3	68

#	Article	IF	CITATIONS
109	Construction of tetrahedral CoO ₄ vacancies for activating the high oxygen evolution activity of Co _{3â^'x} O _{4â^î´} porous nanosheet arrays. Nanoscale, 2020, 12, 11079-11087.	5.6	35
110	Effective removal of U(VI) and Eu(III) by carboxyl functionalized MXene nanosheets. Journal of Hazardous Materials, 2020, 396, 122731.	12.4	166
111	Boron-doped CuO nanobundles for electroreduction of carbon dioxide to ethylene. Green Chemistry, 2020, 22, 2750-2754.	9.0	39
112	Physically Adsorbed Metal Ions in Porous Supports as Electrocatalysts for Oxygen Evolution Reaction. Advanced Functional Materials, 2020, 30, 1909889.	14.9	32
113	Oxygen-Reconstituted Active Species of Single-Atom Cu Catalysts for Oxygen Reduction Reaction. Research, 2020, 2020, 7593023.	5.7	21
114	Isolated zinc in mordenite stabilizing carbonylation of dimethyl ether to methyl acetate. Chinese Chemical Letters, 2019, 30, 513-516.	9.0	16
115	Ni–Co–O hole transport materials: gap state assisted hole extraction with superior electrical conductivity. Journal of Materials Chemistry A, 2019, 7, 20905-20910.	10.3	23
116	Isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation. Nature Communications, 2019, 10, 3787.	12.8	119
117	Ultrathin atomic Mn-decorated formamide-converted N-doped carbon for efficient oxygen reduction reaction. Nanoscale, 2019, 11, 15900-15906.	5.6	43
118	CoFe–Cl Layered Double Hydroxide: A New Cathode Material for Highâ€Performance Chloride Ion Batteries. Advanced Functional Materials, 2019, 29, 1900983.	14.9	83
119	Significantly improved Li-ion diffusion kinetics and reversibility of Li ₂ O in a MoO ₂ anode: the effects of oxygen vacancy-induced local charge distribution and metal catalysis on lithium storage. Journal of Materials Chemistry A, 2019, 7, 17570-17580.	10.3	38
120	Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nature Communications, 2019, 10, 2980.	12.8	235
121	Amorphous Rutheniumâ€Sulfide with Isolated Catalytic Sites for Ptâ€Like Electrocatalytic Hydrogen Production Over Whole pH Range. Small, 2019, 15, e1904043.	10.0	71
122	Boosting Alkaline Hydrogen Evolution Electrocatalysis over Metallic Nickel Sites through Synergistic Coupling with Vanadium Sesquioxide. ChemSusChem, 2019, 12, 5063-5069.	6.8	16
123	General Water-Induced Self-Exfoliation Strategy for the Ultrafast and Large-Scale Synthesis of Metal Hydroxide Nanosheets. Journal of Physical Chemistry Letters, 2019, 10, 6695-6700.	4.6	5
124	Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nature Communications, 2019, 10, 3851.	12.8	288
125	Synchrotron X-ray Absorption Spectroscopy Study of Local Structure in Al-Doped BiFeO3 Powders. Nanoscale Research Letters, 2019, 14, 137.	5.7	29
126	Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nature Communications, 2019, 10, 4290.	12.8	326

#	Article	IF	CITATIONS
127	Plant species-dependent transformation and translocation of ceria nanoparticles. Environmental Science: Nano, 2019, 6, 60-67.	4.3	46
128	Fabrication of 2D metal–organic framework nanosheets with tailorable thickness using bio-based surfactants and their application in catalysis. Green Chemistry, 2019, 21, 54-58.	9.0	66
129	An 2D Polymer Used As Ingredient of Fe/N/C Composite Towards Oxygen Reduction Catalyst In Acidic Medium ChemistrySelect, 2019, 4, 884-891.	1.5	3
130	Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nature Chemistry, 2019, 11, 222-228.	13.6	571
131	Activity enhancement of Pt/MnO _x catalyst by novel β-MnO ₂ for low-temperature CO oxidation: study of the CO–O ₂ competitive adsorption and active oxygen species. Catalysis Science and Technology, 2019, 9, 347-354.	4.1	33
132	General Method for Synthesis Transitionâ€Metal Phosphide/Nitrogen and Phosphide Doped Carbon Materials with Yolk‧hell Structure for Oxygen Reduction Reaction. ChemCatChem, 2019, 11, 1722-1731.	3.7	27
133	A Singleâ€Atom Nanozyme for Wound Disinfection Applications. Angewandte Chemie - International Edition, 2019, 58, 4911-4916.	13.8	607
134	MXene (Ti ₃ C ₂) Vacancy-Confined Single-Atom Catalyst for Efficient Functionalization of CO ₂ . Journal of the American Chemical Society, 2019, 141, 4086-4093.	13.7	479
135	Achieving efficient and robust catalytic reforming on dual-sites of Cu species. Chemical Science, 2019, 10, 2578-2584.	7.4	56
136	<i>Bacillus subtilis</i> causes dissolution of ceria nanoparticles at the nano–bio interface. Environmental Science: Nano, 2019, 6, 216-223.	4.3	15
137	Enhanced CO ₂ electroreduction <i>via</i> interaction of dangling S bonds and Co sites in cobalt phthalocyanine/ZnIn ₂ S ₄ hybrids. Chemical Science, 2019, 10, 1659-1663.	7.4	45
138	A General Strategy for Fabricating Isolated Single Metal Atomic Site Catalysts in Y Zeolite. Journal of the American Chemical Society, 2019, 141, 9305-9311.	13.7	191
139	Amorphous Cobalt Iron Borate Grown on Carbon Paper as a Precatalyst for Water Oxidation. ChemSusChem, 2019, 12, 3524-3531.	6.8	28
140	Highly Mesoporous Ru-MIL-125-NH ₂ Produced by Supercritical Fluid for Efficient Photocatalytic Hydrogen Production. ACS Applied Energy Materials, 2019, 2, 4964-4970.	5.1	37
141	Coordination mode engineering in stacked-nanosheet metal–organic frameworks to enhance catalytic reactivity and structural robustness. Nature Communications, 2019, 10, 2779.	12.8	89
142	Discovery of a new intercalation-type anode for high-performance sodium ion batteries. Journal of Materials Chemistry A, 2019, 7, 15371-15377.	10.3	28
143	Insights into the role of active site density in the fuel cell performance of Co-N-C catalysts. Applied Catalysis B: Environmental, 2019, 256, 117849.	20.2	104
144	Activating Layered Double Hydroxide with Multivacancies by Memory Effect for Energy-Efficient Hydrogen Production at Neutral pH. ACS Energy Letters, 2019, 4, 1412-1418.	17.4	115

#	Article	IF	CITATIONS
145	Defect Engineering in Two Common Types of Dielectric Materials for Electromagnetic Absorption Applications. Advanced Functional Materials, 2019, 29, 1901236.	14.9	469
146	Coexistence of self-reduction from Mn ⁴⁺ to Mn ²⁺ and elastico-mechanoluminescence in diphase KZn(PO ₃) ₃ :Mn ²⁺ . Journal of Materials Chemistry C, 2019, 7, 7096-7103.	5.5	43
147	Nitrogen-coordinated cobalt nanocrystals for oxidative dehydrogenation and hydrogenation of N-heterocycles. Chemical Science, 2019, 10, 5345-5352.	7.4	60
148	Enhanced CO ₂ electroreduction performance over Cl-modified metal catalysts. Journal of Materials Chemistry A, 2019, 7, 12420-12425.	10.3	42
149	A highly efficient alkaline HER Co–Mo bimetallic carbide catalyst with an optimized Mo d-orbital electronic state. Journal of Materials Chemistry A, 2019, 7, 12434-12439.	10.3	58
150	Influence of Surface Charge on the Phytotoxicity, Transformation, and Translocation of CeO ₂ Nanoparticles in Cucumber Plants. ACS Applied Materials & Interfaces, 2019, 11, 16905-16913.	8.0	45
151	Ultrathin Co ₃ O ₄ Nanosheets with Edge-Enriched {111} Planes as Efficient Catalysts for Lithium–Oxygen Batteries. ACS Catalysis, 2019, 9, 3773-3782.	11.2	76
152	Thermal Emitting Strategy to Synthesize Atomically Dispersed Pt Metal Sites from Bulk Pt Metal. Journal of the American Chemical Society, 2019, 141, 4505-4509.	13.7	285
153	Effective Removal of Anionic Re(VII) by Surface-Modified Ti ₂ CT _{<i>x</i>} MXene Nanocomposites: Implications for Tc(VII) Sequestration. Environmental Science & Technology, 2019, 53, 3739-3747.	10.0	163
154	Wellâ€Dispersed Nickel―and Zincâ€Tailored Electronic Structure of a Transition Metal Oxide for Highly Active Alkaline Hydrogen Evolution Reaction. Advanced Materials, 2019, 31, e1807771.	21.0	216
155	Rational Design of Holey 2D Nonlayered Transition Metal Carbide/Nitride Heterostructure Nanosheets for Highly Efficient Water Oxidation. Advanced Energy Materials, 2019, 9, 1803768.	19.5	204
156	Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nature Catalysis, 2019, 2, 259-268.	34.4	958
157	Nitrogen-carbon layer coated nickel nanoparticles for efficient electrocatalytic reduction of carbon dioxide. Nano Research, 2019, 12, 1167-1172.	10.4	41
158	A general route <i>via</i> formamide condensation to prepare atomically dispersed metal–nitrogen–carbon electrocatalysts for energy technologies. Energy and Environmental Science, 2019, 12, 1317-1325.	30.8	290
159	New insights into the chemical forms of extremely high methylmercury in songbird feathers from a contaminated site. Chemosphere, 2019, 225, 803-809.	8.2	10
160	Cu _x Ni _y alloy nanoparticles embedded in a nitrogen–carbon network for efficient conversion of carbon dioxide. Chemical Science, 2019, 10, 4491-4496.	7.4	32
161	Pd Singleâ€Atom Catalysts on Nitrogenâ€Doped Graphene for the Highly Selective Photothermal Hydrogenation of Acetylene to Ethylene. Advanced Materials, 2019, 31, e1900509.	21.0	262
162	The Role of Alkali Metal in αâ€MnO ₂ Catalyzed Ammonia‣elective Catalysis. Angewandte Chemie - International Edition, 2019, 58, 6351-6356.	13.8	110

#	Article	IF	CITATIONS
163	Sputtered Cu-ZnO/γ-Al ₂ O ₃ Bifunctional Catalyst with Ultra-Low Cu Content Boosting Dimethyl Ether Steam Reforming and Inhibiting Side Reactions. Industrial & Engineering Chemistry Research, 2019, 58, 7085-7093.	3.7	11
164	Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nature Communications, 2019, 10, 1711.	12.8	446
165	Elucidating the mechanism of the structure-dependent enzymatic activity of Fe–N/C oxidase mimics. Chemical Communications, 2019, 55, 5271-5274.	4.1	95
166	Substrate Metabolism-Driven Assembly of High-Quality CdS _{<i>x</i>} Se _{1–<i>x</i>} Quantum Dots in <i>Escherichia coli</i> : Molecular Mechanisms and Bioimaging Application. ACS Nano, 2019, 13, 5841-5851.	14.6	45
167	2D MOF induced accessible and exclusive Co single sites for an efficient <i>O</i> -silylation of alcohols with silanes. Chemical Communications, 2019, 55, 6563-6566.	4.1	34
168	Twinned Tungsten Carbonitride Nanocrystals Boost Hydrogen Evolution Activity and Stability. Small, 2019, 15, e1900248.	10.0	57
169	Sorption mechanisms of lead on silicon-rich biochar in aqueous solution: Spectroscopic investigation. Science of the Total Environment, 2019, 672, 572-582.	8.0	79
170	Breaking the symmetry: Gradient in NiFe layered double hydroxide nanoarrays for efficient oxygen evolution. Nano Energy, 2019, 60, 661-666.	16.0	52
171	Enhancing the Catalytic Activity of Co ₃ O ₄ Nanosheets for Li-O ₂ Batteries by the Incoporation of Oxygen Vacancy with Hydrazine Hydrate Reduction. Inorganic Chemistry, 2019, 58, 4989-4996.	4.0	45
172	XAFS Studies of Feâ^'SiO ₂ Fischerâ€Tropsch Catalyst During Activation in CO, H ₂ , and Synthesis Gas. ChemCatChem, 2019, 11, 2206-2216.	3.7	13
173	Aqueous CO ₂ Reduction with High Efficiency Using αâ€Co(OH) ₂ â€Supported Atomic Ir Electrocatalysts. Angewandte Chemie - International Edition, 2019, 58, 4669-4673.	13.8	90
174	Adsorption of Eu(III) and Th(IV) on three-dimensional graphene-based macrostructure studied by spectroscopic investigation. Environmental Pollution, 2019, 248, 82-89.	7.5	51
175	High-pressure synthesis, crystal structure, and magnetic properties of hexagonal Ba3CuOs2O9. Journal of Solid State Chemistry, 2019, 272, 182-188.	2.9	4
176	Support morphology-dependent alloying behaviour and interfacial effects of bimetallic Ni–Cu/CeO ₂ catalysts. Chemical Science, 2019, 10, 3556-3566.	7.4	34
177	Cold pressing-built microreactors to thermally manipulate microstructure of MXene film as an anode for high-performance lithium-ion batteries. Electrochimica Acta, 2019, 305, 11-23.	5.2	15
178	Li ₄ SrCa(SiO ₄) ₂ :Eu ²⁺ : A Potential Temperature Sensor with Unique Optical Thermometric Properties. ACS Applied Materials & Interfaces, 2019, 11, 9691-9695.	8.0	89
179	Au ^{δâ^'} –O _v –Ti ³⁺ Interfacial Site: Catalytic Active Center toward Low-Temperature Water Gas Shift Reaction. ACS Catalysis, 2019, 9, 2707-2717.	11.2	153
180	S-Edge-rich Mo _x S _y arrays vertically grown on carbon aerogels as superior bifunctional HER/OER electrocatalysts. Nanoscale, 2019, 11, 20284-20294.	5.6	32

#	Article	IF	CITATIONS
181	Bismuth oxyiodide microflower-derived catalysts for efficient CO ₂ electroreduction in a wide negative potential region. Chemical Communications, 2019, 55, 12392-12395.	4.1	25
182	Amorphous MoO _{3â^'x} nanosheets prepared by the reduction of crystalline MoO ₃ by Mo metal for LSPR and photothermal conversion. Chemical Communications, 2019, 55, 12527-12530.	4.1	36
183	Aerobic selective oxidation of methylaromatics to benzoic acids over Co@N/Co-CNTs with high loading CoN ₄ species. Journal of Materials Chemistry A, 2019, 7, 27212-27216.	10.3	22
184	Revealing the Intrinsic Peroxidase-Like Catalytic Mechanism of Heterogeneous Single-Atom Co–MoS2. Nano-Micro Letters, 2019, 11, 102.	27.0	114
185	Self-supported hydrogenolysis of aromatic ethers to arenes. Science Advances, 2019, 5, eaax6839.	10.3	39
186	Preparation of Fe–N–C catalysts with FeN _x (<i>x</i> = 1, 3, 4) active sites and comparison of their activities for the oxygen reduction reaction and performances in proton exchange membrane fuel cells. Journal of Materials Chemistry A, 2019, 7, 26147-26153.	10.3	172
187	Reconstructing bimetallic carbide Mo ₆ Ni ₆ C for carbon interconnected MoNi alloys to boost oxygen evolution electrocatalysis. Materials Horizons, 2019, 6, 115-121.	12.2	62
188	Pressure induced transformation and subsequent amorphization of monoclinic Nb ₂ O ₅ and its effect on optical properties. Journal of Physics Condensed Matter, 2019, 31, 105401.	1.8	7
189	Rapid-Heating-Triggered <i>in Situ</i> Solid-State Transformation of Amorphous TiO ₂ Nanotubes into Well-Defined Anatase Nanocrystals. Crystal Growth and Design, 2019, 19, 1086-1094.	3.0	4
190	A Metastable Crystalline Phase in Twoâ€Dimensional Metallic Oxide Nanoplates. Angewandte Chemie - International Edition, 2019, 58, 2055-2059.	13.8	19
191	Atomic Insights for Optimum and Excess Doping in Photocatalysis: A Case Study of Fewâ€Layer Cuâ€ZnIn ₂ S ₄ . Advanced Functional Materials, 2019, 29, 1807013.	14.9	165
192	Iridium-Triggered Phase Transition of MoS ₂ Nanosheets Boosts Overall Water Splitting in Alkaline Media. ACS Energy Letters, 2019, 4, 368-374.	17.4	105
193	Effect of Î ³ -manganite particle size on Zn2+ coordination environment during adsorption and desorption. Applied Clay Science, 2019, 168, 68-76.	5.2	9
194	NiFe Hydroxide Lattice Tensile Strain: Enhancement of Adsorption of Oxygenated Intermediates for Efficient Water Oxidation Catalysis. Angewandte Chemie - International Edition, 2019, 58, 736-740.	13.8	335
195	Strong Electron Coupling from the Sub-Nanometer Pd Clusters Confined in Porous Ceria Nanorods for Highly Efficient Electrochemical Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 966-973.	5.1	39
196	Cd2+ adsorption performance of tunnel-structured manganese oxides driven by electrochemically controlled redox. Environmental Pollution, 2019, 244, 783-791.	7.5	33
197	Transformation of Co-containing birnessite to todorokite: Effect of Co on the transformation and implications for Co mobility. Geochimica Et Cosmochimica Acta, 2019, 246, 21-40.	3.9	38
198	Unraveling the Low-Temperature Redox Behavior of Ultrathin Ceria Nanosheets with Exposed {110} Facets by in Situ XAFS/DRIFTS Utilizing CO as Molecule Probe. Journal of Physical Chemistry C, 2019, 123, 322-333.	3.1	4

#	Article	IF	CITATIONS
199	Rational Design of Fe–N/C Hybrid for Enhanced Nitrogen Reduction Electrocatalysis under Ambient Conditions in Aqueous Solution. ACS Catalysis, 2019, 9, 336-344.	11.2	278
200	A noble-metal-free SCR-LNT coupled catalytic system used for high-concentration NOx reduction under lean-burn condition. Catalysis Today, 2019, 327, 347-356.	4.4	15
201	A Polymer Encapsulation Strategy to Synthesize Porous Nitrogenâ€Doped Carbonâ€Nanosphereâ€Supported Metal Isolatedâ€Singleâ€Atomicâ€Site Catalysts. Advanced Materials, 2018, 30, e1706508.	21.0	266
202	Relationship between Iron Carbide Phases (ε-Fe ₂ C, Fe ₇ C ₃ , and) Tj ETQq0 Catalysts. ACS Catalysis, 2018, 8, 3304-3316.	0 0 rgBT 11.2	Overlock 10 200
203	Design of Single-Atom Co–N ₅ Catalytic Site: A Robust Electrocatalyst for CO ₂ Reduction with Nearly 100% CO Selectivity and Remarkable Stability. Journal of the American Chemical Society, 2018, 140, 4218-4221.	13.7	945
204	Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nature Communications, 2018, 9, 1002.	12.8	255
205	Site Occupancy and VUV–UV–Vis Photoluminescence of the Lanthanide Ions in BaY ₂ Si ₃ O ₁₀ . Journal of Physical Chemistry C, 2018, 122, 7421-7431.	3.1	17
206	Uranium speciation in coal bottom ash investigated via X-ray absorption fine structure and X-ray photoelectron spectra. Journal of Environmental Sciences, 2018, 74, 88-94.	6.1	13
207	Oxygen-doped carbonaceous polypyrrole nanotubes-supported Ag nanoparticle as electrocatalyst for oxygen reduction reaction in alkaline solution. Materials Research Bulletin, 2018, 105, 184-191.	5.2	23
208	Molecular-Level Insight into Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ to N ₂ over a Highly Efficient Bifunctional V _{<i>a</i>} -MnO _{<i>x</i>} Catalyst at Low Temperature. ACS Catalysis, 2018, 8, 4937-4949.	11.2	103
209	Ionâ€Exchangeable Microporous Polyoxometalate Compounds with Offâ€Center Dopants Exhibiting Unconventional Luminescence. Chemistry - A European Journal, 2018, 24, 9976-9982.	3.3	3
210	MIL-125-NH ₂ @TiO ₂ Core–Shell Particles Produced by a Post-Solvothermal Route for High-Performance Photocatalytic H ₂ Production. ACS Applied Materials & Interfaces, 2018, 10, 16418-16423.	8.0	143
211	Tin(IV) Sulfide Greatly Improves the Catalytic Performance of UiOâ€66 for Carbon Dioxide Cycloaddition. ChemCatChem, 2018, 10, 2945-2948.	3.7	11
212	Electrocatalytically Active Hollow Carbon Nanospheres Derived from PSâ€ <i>b</i> â€P4VP Micelles. Particle and Particle Systems Characterization, 2018, 35, 1700404.	2.3	9
213	Controlling Selective Doping and Energy Transfer between Transition Metal and Rare Earth Ions in Nanostructured Classy Solids. Advanced Optical Materials, 2018, 6, 1701407.	7.3	64
214	Transformation of Perovskite BaBiO ₃ into Layered BaBiO _{2.5} Crystals Featuring Unusual Chemical Bonding and Luminescence. Chemistry - A European Journal, 2018, 24, 8875-8882.	3.3	1
215	Local-structure change rendered by electronic localization-delocalization transition in cerium-based metallic glasses. Physical Review B, 2018, 97, .	3.2	4
216	Selective catalytic reduction of NO with NH3 over short-range ordered W O Fe structures with high thermal stability. Applied Catalysis B: Environmental, 2018, 229, 81-87.	20.2	53

#	Article	IF	CITATIONS
217	Defect Effects on TiO ₂ Nanosheets: Stabilizing Single Atomic Site Au and Promoting Catalytic Properties. Advanced Materials, 2018, 30, 1705369.	21.0	751
218	Enhancing the Catalytic Activity of Co ₃ O ₄ for Li–O ₂ Batteries through the Synergy of Surface/Interface/Doping Engineering. ACS Catalysis, 2018, 8, 1955-1963.	11.2	111
219	Hydrogen Evolution Reaction in Alkaline Media: Alpha- or Beta-Nickel Hydroxide on the Surface of Platinum?. ACS Energy Letters, 2018, 3, 237-244.	17.4	230
220	Modulating the Electrochemical Performances of Layered Cathode Materials for Sodium Ion Batteries through Tuning Coulombic Repulsion between Negatively Charged TMO ₂ Slabs. ACS Applied Materials & Interfaces, 2018, 10, 1707-1718.	8.0	34
221	Addition of Pd on La _{0.7} Sr _{0.3} CoO ₃ Perovskite To Enhance Catalytic Removal of NO _{<i>x</i>} . Industrial & Engineering Chemistry Research, 2018, 57, 521-531.	3.7	32
222	Effect of Soil Fulvic and Humic Acids on Pb Binding to the Goethite/Solution Interface: Ligand Charge Distribution Modeling and Speciation Distribution of Pb. Environmental Science & Technology, 2018, 52, 1348-1356.	10.0	45
223	Preparation of Highâ€Percentage 1Tâ€Phase Transition Metal Dichalcogenide Nanodots for Electrochemical Hydrogen Evolution. Advanced Materials, 2018, 30, 1705509.	21.0	341
224	Selective hydrogenation of unsaturated aldehydes over Pt nanoparticles promoted by the cooperation of steric and electronic effects. Chemical Communications, 2018, 54, 908-911.	4.1	55
225	Active Site Identification and Modification of Electronic States by Atomic-Scale Doping To Enhance Oxide Catalyst Innovation. ACS Catalysis, 2018, 8, 1399-1404.	11.2	42
226	Optical Properties of Ce-Doped Li ₄ SrCa(SiO ₄) ₂ : A Combined Experimental and Theoretical Study. Inorganic Chemistry, 2018, 57, 1116-1124.	4.0	26
227	Uric acid-derived Fe3C-containing mesoporous Fe/N/C composite with high activity for oxygen reduction reaction in alkaline medium. Journal of Power Sources, 2018, 378, 491-498.	7.8	26
228	Fe Isolated Single Atoms on S, N Codoped Carbon by Copolymer Pyrolysis Strategy for Highly Efficient Oxygen Reduction Reaction. Advanced Materials, 2018, 30, e1800588.	21.0	511
229	Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction reaction. Chemical Communications, 2018, 54, 4274-4277.	4.1	166
230	Quasi free K cations confined in hollandite-type tunnels for catalytic solid (catalyst)-solid (reactant) oxidation reactions. Applied Catalysis B: Environmental, 2018, 232, 108-116.	20.2	85
231	One-step synthesis of ultrathin α-Co(OH) ₂ nanomeshes and their high electrocatalytic activity toward the oxygen evolution reaction. Chemical Communications, 2018, 54, 4045-4048.	4.1	71
232	A Voltageâ€Boosting Strategy Enabling a Lowâ€Frequency, Flexible Electromagnetic Wave Absorption Device. Advanced Materials, 2018, 30, e1706343.	21.0	691
233	Grain boundaries modulating active sites in RhCo porous nanospheres for efficient CO2 hydrogenation. Nano Research, 2018, 11, 2357-2365.	10.4	21
234	Local coulomb attraction for enhanced H2 evolution stability of metal sulfide photocatalysts. Applied Catalysis B: Environmental, 2018, 221, 152-157.	20.2	18

#	Article	IF	CITATIONS
235	Insights into the effects of surface/bulk defects on photocatalytic hydrogen evolution over TiO2 with exposed {001} facets. Applied Catalysis B: Environmental, 2018, 220, 126-136.	20.2	176
236	Bimetallic Carbide as a Stable Hydrogen Evolution Catalyst in Harsh Acidic Water. ACS Energy Letters, 2018, 3, 78-84.	17.4	42
237	Chromium detoxification in arbuscular mycorrhizal symbiosis mediated by sulfur uptake and metabolism. Environmental and Experimental Botany, 2018, 147, 43-52.	4.2	36
238	The Solidâ€Phase Synthesis of an Feâ€Nâ€C Electrocatalyst for Highâ€Power Protonâ€Exchange Membrane Fuel Cells. Angewandte Chemie - International Edition, 2018, 57, 1204-1208.	13.8	293
239	Insights on Active Sites of CaAl-Hydrotalcite as a High-Performance Solid Base Catalyst toward Aldol Condensation. ACS Catalysis, 2018, 8, 656-664.	11.2	78
240	Ce0.3Zr0.7O1.88N0.12 solid solution as a stable photocatalyst for visible light driven water splitting. Applied Catalysis B: Environmental, 2018, 224, 733-739.	20.2	4
241	Ultrathin and Porous Carbon Nanosheets Supporting Bimetallic Nanoparticles for Highâ€Performance Electrocatalysis. ChemCatChem, 2018, 10, 1241-1247.	3.7	3
242	X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions. Light: Science and Applications, 2018, 7, 88.	16.6	159
243	Singleâ€Atom to Singleâ€Atom Grafting of Pt ₁ onto FeN ₄ Center: Pt ₁ @FeNC Multifunctional Electrocatalyst with Significantly Enhanced Properties. Advanced Energy Materials, 2018, 8, 1701345.	19.5	371
244	Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nature Communications, 2018, 9, 5422.	12.8	696
245	Toward Bifunctional Overall Water Splitting Electrocatalyst: General Preparation of Transition Metal Phosphide Nanoparticles Decorated N-Doped Porous Carbon Spheres. ACS Applied Materials & Interfaces, 2018, 10, 44201-44208.	8.0	71
246	Effective Zinc Adsorption Driven by Electrochemical Redox Reactions of Birnessite Nanosheets Generated by Solar Photochemistry. ACS Sustainable Chemistry and Engineering, 2018, 6, 13907-13914.	6.7	8
247	A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nature Communications, 2018, 9, 3861.	12.8	210
248	Tuning Metal Catalyst with Metal–C ₃ N ₄ Interaction for Efficient CO ₂ Electroreduction. ACS Catalysis, 2018, 8, 11035-11041.	11.2	161
249	Tunable Thermal Expansion from Negative, Zero, to Positive in Cubic Prussian Blue Analogues of GaFe(CN) ₆ . Inorganic Chemistry, 2018, 57, 14027-14030.	4.0	28
250	Constructing NiCo/Fe ₃ O ₄ Heteroparticles within MOF-74 for Efficient Oxygen Evolution Reactions. Journal of the American Chemical Society, 2018, 140, 15336-15341.	13.7	310
251	Functionalized MoS ₂ Nanovehicle with Nearâ€Infrared Laserâ€Mediated Nitric Oxide Release and Photothermal Activities for Advanced Bacteriaâ€Infected Wound Therapy. Small, 2018, 14, e1802290. 	10.0	259
252	Extracting structural information of higher coordination shells by analyzing EXAFS derivative spectrum. Physica Scripta, 2018, 93, 125701.	2.5	0

#	Article	IF	CITATIONS
253	High Pressure Induced in Situ Solid-State Phase Transformation of Nonepitaxial Grown Metal@Semiconductor Nanocrystals. Journal of Physical Chemistry Letters, 2018, 9, 6544-6549.	4.6	5
254	A Selfâ€Sacrificing Dualâ€Template Strategy to Heteroatomâ€Enriched Porous Carbon Nanosheets with High Pyridinicâ€N and Pyrrolicâ€N Content for Oxygen Reduction Reaction and Sodium Storage. Advanced Materials Interfaces, 2018, 5, 1801149.	3.7	21
255	Local Chemical Strain in PtFe Alloy Nanoparticles. Inorganic Chemistry, 2018, 57, 10494-10497.	4.0	10
256	Organic matter facilitates the binding of Pb to iron oxides in a subtropical contaminated soil. Environmental Science and Pollution Research, 2018, 25, 32130-32139.	5.3	22
257	One-Pot Pyrolysis to N-Doped Graphene with High-Density Pt Single Atomic Sites as Heterogeneous Catalyst for Alkene Hydrosilylation. ACS Catalysis, 2018, 8, 10004-10011.	11.2	121
258	Cobalt Covalent Doping in MoS ₂ to Induce Bifunctionality of Overall Water Splitting. Advanced Materials, 2018, 30, e1801450.	21.0	402
259	Ordered Porous Nitrogenâ€Doped Carbon Matrix with Atomically Dispersed Cobalt Sites as an Efficient Catalyst for Dehydrogenation and Transfer Hydrogenation of Nâ€Heterocycles. Angewandte Chemie - International Edition, 2018, 57, 11262-11266.	13.8	165
260	Trophic Transfer and Transformation of CeO ₂ Nanoparticles along a Terrestrial Food Chain: Influence of Exposure Routes. Environmental Science & Technology, 2018, 52, 7921-7927.	10.0	49
261	Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy and Environmental Science, 2018, 11, 2348-2352.	30.8	336
262	Organophosphoric acid-derived CoP quantum dots@S,N-codoped graphite carbon as a trifunctional electrocatalyst for overall water splitting and Zn–air batteries. Nanoscale, 2018, 10, 14613-14626.	5.6	74
263	Modification of Cu/SiO ₂ Catalysts by La ₂ O ₃ to Quantitatively Tune Cu ⁺ u ⁰ Dual Sites with Improved Catalytic Activities and Stabilities for Dimethyl Ether Steam Reforming. ChemCatChem, 2018, 10, 3862-3871.	3.7	31
264	Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Research, 2018, 11, 6260-6269.	10.4	118
265	Activity enhancement <i>via</i> borate incorporation into a NiFe (oxy)hydroxide catalyst for electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 16959-16964.	10.3	21
266	1D/1D Hierarchical Nickel Sulfide/Phosphide Nanostructures for Electrocatalytic Water Oxidation. ACS Energy Letters, 2018, 3, 2021-2029.	17.4	93
267	Simultaneous elimination of cationic uranium(<scp>vi</scp>) and anionic rhenium(<scp>vii</scp>) by graphene oxide–poly(ethyleneimine) macrostructures: a batch, XPS, EXAFS, and DFT combined study. Environmental Science: Nano, 2018, 5, 2077-2087.	4.3	95
268	Scaleâ€Up Biomass Pathway to Cobalt Singleâ€Site Catalysts Anchored on Nâ€Doped Porous Carbon Nanobelt with Ultrahigh Surface Area. Advanced Functional Materials, 2018, 28, 1802167.	14.9	112
269	Black Phosphorus Quantum Dot/Ti ₃ C ₂ MXene Nanosheet Composites for Efficient Electrochemical Lithium/Sodiumâ€ion Storage. Advanced Energy Materials, 2018, 8, 1801514.	19.5	251
270	The preferential retention of VIZn over IVZn on birnessite during dissolution/desorption. Applied Clay Science, 2018, 161, 169-175.	5.2	8

#	Article	IF	CITATIONS
271	Doping-Enhanced Short-Range Order of Perovskite Nanocrystals for Near-Unity Violet Luminescence Quantum Yield. Journal of the American Chemical Society, 2018, 140, 9942-9951.	13.7	548
272	Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nature Nanotechnology, 2018, 13, 856-861.	31.5	741
273	Insights into Interfacial Synergistic Catalysis over Ni@TiO _{2–<i>x</i>} Catalyst toward Water–Gas Shift Reaction. Journal of the American Chemical Society, 2018, 140, 11241-11251.	13.7	208
274	The self-template synthesis of highly efficient hollow structure Fe/N/C electrocatalysts with Fe–N coordination for the oxygen reduction reaction. RSC Advances, 2018, 8, 24509-24516.	3.6	25
275	Surface engineering of nickel selenide for an enhanced intrinsic overall water splitting ability. Materials Chemistry Frontiers, 2018, 2, 1725-1731.	5.9	44
276	Cobalt-iron (oxides) water oxidation catalysts: Tracking catalyst redox states and reaction dynamic mechanism. Journal of Catalysis, 2018, 365, 227-237.	6.2	28
277	A Bimetallic Zn/Fe Polyphthalocyanineâ€Derived Singleâ€Atom Feâ€N ₄ Catalytic Site:A Superior Trifunctional Catalyst for Overall Water Splitting and Zn–Air Batteries. Angewandte Chemie, 2018, 130, 8750-8754.	2.0	51
278	A Bimetallic Zn/Fe Polyphthalocyanineâ€Derived Singleâ€Atom Feâ€N ₄ Catalytic Site:A Superior Trifunctional Catalyst for Overall Water Splitting and Zn–Air Batteries. Angewandte Chemie - International Edition, 2018, 57, 8614-8618.	13.8	455
279	Study of the Active Sites in Porous Nickel Oxide Nanosheets by Manganese Modulation for Enhanced Oxygen Evolution Catalysis. ACS Energy Letters, 2018, 3, 2150-2158.	17.4	131
280	Efficient U(VI) Reduction and Sequestration by Ti ₂ CT _{<i>x</i>} MXene. Environmental Science & Technology, 2018, 52, 10748-10756.	10.0	253
281	Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer–Tropsch synthesis. Nature Communications, 2018, 9, 3250.	12.8	186
282	Roomâ€Temperature Synthesis of Covalent Organic Framework (COF‣ZU1) Nanobars in CO ₂ /Water Solvent. ChemSusChem, 2018, 11, 3576-3580.	6.8	38
283	CoO/CoP Heterostructured Nanosheets with an O–P Interpenetrated Interface as a Bifunctional Electrocatalyst for Na–O ₂ Battery. ACS Catalysis, 2018, 8, 8953-8960.	11.2	98
284	Copper-modulated bismuth nanocrystals alter the formate formation pathway to achieve highly selective CO ₂ electroreduction. Journal of Materials Chemistry A, 2018, 6, 16804-16809.	10.3	74
285	Discovering Partially Charged Single-Atom Pt for Enhanced Anti-Markovnikov Alkene Hydrosilylation. Journal of the American Chemical Society, 2018, 140, 7407-7410.	13.7	218
286	A CaMnAl-hydrotalcite solid basic catalyst toward the aldol condensation reaction with a comparable level to liquid alkali catalysts. Green Chemistry, 2018, 20, 3071-3080.	9.0	35
287	The distinct effects of isomorphous substitution of various divalence trace metals on hematite structure. Materials Chemistry and Physics, 2018, 217, 40-47.	4.0	5
288	Evaluation of arsenic sorption and mobility in stream sediment and hot spring deposit in three drainages of the Tibetan Plateau. Applied Geochemistry, 2017, 77, 89-101.	3.0	19

#	Article	IF	CITATIONS
289	Metal–Organic-Framework-Derived Fe-N/C Electrocatalyst with Five-Coordinated Fe-N _{<i>x</i>} Sites for Advanced Oxygen Reduction in Acid Media. ACS Catalysis, 2017, 7, 1655-1663.	11.2	483
290	Atomically Dispersed Fe/N-Doped Hierarchical Carbon Architectures Derived from a Metal–Organic Framework Composite for Extremely Efficient Electrocatalysis. ACS Energy Letters, 2017, 2, 504-511.	17.4	279
291	Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide. Nature Communications, 2017, 8, 14548.	12.8	174
292	The monolithic transition metal oxide crossed nanosheets used for diesel soot combustion under gravitational contact mode. Applied Surface Science, 2017, 406, 245-253.	6.1	35
293	Mo ⁶⁺ activated multimetal oxygen-evolving catalysts. Chemical Science, 2017, 8, 3484-3488.	7.4	129
294	Water-soluble inorganic photocatalyst for overall water splitting. Applied Catalysis B: Environmental, 2017, 209, 247-252.	20.2	16
295	Isolated Single Iron Atoms Anchored on Nâ€Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2017, 56, 6937-6941.	13.8	1,542
296	Insight into Copper Oxideâ€Tin Oxide Catalysts for the Catalytic Oxidation of Carbon Monoxide: Identification of Active Copper Species and a Reaction Mechanism. ChemCatChem, 2017, 9, 3226-3235.	3.7	20
297	Isolated Single Iron Atoms Anchored on Nâ€Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie, 2017, 129, 7041-7045.	2.0	306
298	Enhanced Photocatalytic Removal of Uranium(VI) from Aqueous Solution by Magnetic TiO ₂ /Fe ₃ O ₄ and Its Graphene Composite. Environmental Science & Technology, 2017, 51, 5666-5674.	10.0	292
299	An experimental study of the local electronic structure of B-site gallium doped bismuth ferrite powders. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 2367-2373.	2.1	19
300	CO ₂ /Water Emulsions Stabilized by Partially Reduced Graphene Oxide. ACS Applied Materials & Interfaces, 2017, 9, 17613-17619.	8.0	10
301	One-pot synthesis of MoSe2 hetero-dimensional hybrid self-assembled by nanodots and nanosheets for electrocatalytic hydrogen evolution and photothermal therapy. Nano Research, 2017, 10, 2667-2682.	10.4	48
302	Iron-niobium composite oxides for selective catalytic reduction of NO with NH3. Catalysis Communications, 2017, 97, 111-115.	3.3	20
303	Diesel soot elimination over potassium-promoted Co3O4 nanowires monolithic catalysts under gravitation contact mode. Applied Catalysis B: Environmental, 2017, 218, 32-45.	20.2	105
304	Electrodeposited Mo ₃ S ₁₃ Films from (NH ₄) ₂ Mo ₃ S ₁₃ ·2H ₂ O for Electrocatalysis of Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 18675-18681.	8.0	52
305	Topotactic reduction of layered double hydroxides for atomically thick two-dimensional non-noble-metal alloy. Nano Research, 2017, 10, 2988-2997.	10.4	38
306	Oxidizing, trapping and releasing NO x over model manganese oxides in alternative lean-burn/fuel-rich atmospheres at low temperatures. Catalysis Today, 2017, 297, 27-35.	4.4	17

#	Article	IF	CITATIONS
307	Black Tungsten Nitride as a Metallic Photocatalyst for Overall Water Splitting Operable at up to 765â€nm. Angewandte Chemie, 2017, 129, 7538-7542.	2.0	19
308	Black Tungsten Nitride as a Metallic Photocatalyst for Overall Water Splitting Operable at up to 765â€nm. Angewandte Chemie - International Edition, 2017, 56, 7430-7434.	13.8	97
309	Local electronic structure analysis of Zn-doped BiFeO3 powders by X-ray absorption fine structure spectroscopy. Journal of Alloys and Compounds, 2017, 710, 843-849.	5.5	26
310	Discerning lattice and electronic structures in under- and over-doped multiferroic Aurivillius films. Journal of Applied Physics, 2017, 121, 114107.	2.5	6
311	Xylem and Phloem Based Transport of CeO ₂ Nanoparticles in Hydroponic Cucumber Plants. Environmental Science & Technology, 2017, 51, 5215-5221.	10.0	97
312	<i>AI-BL</i> 1.0: a program for automatic on-line beamline optimization using the evolutionary algorithm. Journal of Synchrotron Radiation, 2017, 24, 367-373.	2.4	2
313	Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy. Environmental Pollution, 2017, 225, 361-369.	7.5	54
314	Rational Design of Single Molybdenum Atoms Anchored on Nâ€Doped Carbon for Effective Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 16086-16090.	13.8	431
315	Highly active, stable oxidized platinum clusters as electrocatalysts for the hydrogen evolution reaction. Energy and Environmental Science, 2017, 10, 2450-2458.	30.8	246
316	TiO _{2–<i>x</i>} -Modified Ni Nanocatalyst with Tunable Metal–Support Interaction for Water–Gas Shift Reaction. ACS Catalysis, 2017, 7, 7600-7609.	11.2	268
317	Single Ni sites distributed on N-doped carbon for selective hydrogenation of acetylene. Chemical Communications, 2017, 53, 11568-11571.	4.1	88
318	Layeredâ€Doubleâ€Hydroxide Nanosheets as Efficient Visibleâ€Lightâ€Driven Photocatalysts for Dinitrogen Fixation. Advanced Materials, 2017, 29, 1703828.	21.0	524
319	Mechanisms of arsenic-containing pyrite oxidation by aqueous arsenate under anoxic conditions. Geochimica Et Cosmochimica Acta, 2017, 217, 306-319.	3.9	53
320	A three-dimensional hierarchically porous Mo ₂ C architecture: salt-template synthesis of a robust electrocatalyst and anode material towards the hydrogen evolution reaction and lithium storage. Journal of Materials Chemistry A, 2017, 5, 20228-20238.	10.3	111
321	Shape-Dependent Transformation and Translocation of Ceria Nanoparticles in Cucumber Plants. Environmental Science and Technology Letters, 2017, 4, 380-385.	8.7	44
322	Enhancement of Zn2+ and Ni2+ removal performance using a deionization pseudocapacitor with nanostructured birnessite and its carbon nanotube composite electrodes. Chemical Engineering Journal, 2017, 328, 464-473.	12.7	44
323	Interaction mechanism of uranium(VI) with three-dimensional graphene oxide-chitosan composite: Insights from batch experiments, IR, XPS, and EXAFS spectroscopy. Chemical Engineering Journal, 2017, 328, 1066-1074.	12.7	266
324	Metal (Hydr)oxides@Polymer Core–Shell Strategy to Metal Single-Atom Materials. Journal of the American Chemical Society, 2017, 139, 10976-10979.	13.7	257

#	Article	IF	CITATIONS
325	Giant Enhancement of Luminescence from Phosphors through Oxygenâ€Vacancyâ€Mediated Chemical Pressure Relaxation. Advanced Optical Materials, 2017, 5, 1700448.	7.3	21
326	Ni ₂ P(O)/Fe ₂ P(O) Interface Can Boost Oxygen Evolution Electrocatalysis. ACS Energy Letters, 2017, 2, 2257-2263.	17.4	173
327	Ionic liquid accelerates the crystallization of Zr-based metal–organic frameworks. Nature Communications, 2017, 8, 175.	12.8	111
328	Local Chemical Ordering and Negative Thermal Expansion in PtNi Alloy Nanoparticles. Nano Letters, 2017, 17, 7892-7896.	9.1	34
329	Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nature Communications, 2017, 8, 1509.	12.8	361
330	Hollow N-Doped Carbon Spheres with Isolated Cobalt Single Atomic Sites: Superior Electrocatalysts for Oxygen Reduction. Journal of the American Chemical Society, 2017, 139, 17269-17272.	13.7	556
331	Local structure of Cu2+ in Cu-doped hexagonal turbostratic birnessite and Cu2+ stability under acid treatment. Chemical Geology, 2017, 466, 512-523.	3.3	31
332	Isolation of single Pt atoms in a silver cluster: forming highly efficient silver-based cocatalysts for photocatalytic hydrogen evolution. Chemical Communications, 2017, 53, 9402-9405.	4.1	76
333	Time-resolved XAFS measurement using quick-scanning techniques at BSRF. Journal of Synchrotron Radiation, 2017, 24, 674-678.	2.4	8
334	Enhanced catalytic performance for CO preferential oxidation over CuO catalysts supported on highly defective CeO2 nanocrystals. Applied Surface Science, 2017, 422, 932-943.	6.1	62
335	Uncoordinated Amine Groups of Metal–Organic Frameworks to Anchor Single Ru Sites as Chemoselective Catalysts toward the Hydrogenation of Quinoline. Journal of the American Chemical Society, 2017, 139, 9419-9422.	13.7	558
336	Unraveling sorption of lead in aqueous solutions by chemically modified biochar derived from coconut fiber: A microscopic and spectroscopic investigation. Science of the Total Environment, 2017, 576, 766-774.	8.0	172
337	Crystal structure and thermal characteristics of Mn modified ultra-high curie temperature (>800°C) Bi2WO6 piezoelectric ceramics. Journal of Alloys and Compounds, 2017, 692, 454-459.	5.5	7
338	Confocal depth-resolved fluorescence micro-X-ray absorption spectroscopy for the study of cultural heritage materials: a new mobile endstation at the Beijing Synchrotron Radiation Facility. Journal of Synchrotron Radiation, 2017, 24, 1000-1005.	2.4	11
339	Electrochemical etching of α-cobalt hydroxide for improvement of oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 9578-9584.	10.3	125
340	Active Site Dependent Reaction Mechanism over Ru/CeO ₂ Catalyst toward CO ₂ Methanation. Journal of the American Chemical Society, 2016, 138, 6298-6305.	13.7	489
341	Single Cobalt Atoms with Precise N oordination as Superior Oxygen Reduction Reaction Catalysts. Angewandte Chemie - International Edition, 2016, 55, 10800-10805.	13.8	1,836
342	Metal–Organic Framework for Emulsifying Carbon Dioxide and Water. Angewandte Chemie - International Edition, 2016, 55, 11372-11376.	13.8	36

#	Article	IF	CITATIONS
343	Functionalized Nano-MoS ₂ with Peroxidase Catalytic and Near-Infrared Photothermal Activities for Safe and Synergetic Wound Antibacterial Applications. ACS Nano, 2016, 10, 11000-11011.	14.6	812
344	Amorphous Vanadium Oxide/Molybdenum Oxide Hybrid with Three-Dimensional Ordered Hierarchically Porous Structure as a High-Performance Li-Ion Battery Anode. Chemistry of Materials, 2016, 28, 4180-4190.	6.7	82
345	Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, 2016, 352, 333-337.	12.6	1,948
346	Orange Zinc Germanate with Metallic GeGe Bonds as a Chromophore‣ike Center for Visible‣ightâ€Driven Water Splitting. Angewandte Chemie - International Edition, 2015, 54, 11467-11471.	13.8	18
347	Lithium Storage in Microstructures of Amorphous Mixedâ€Valence Vanadium Oxide as Anode Materials. ChemSusChem, 2015, 8, 2212-2222.	6.8	42
348	Transformation of ceria nanoparticles in cucumber plants is influenced by phosphate. Environmental Pollution, 2015, 198, 8-14.	7.5	84
349	Probing the Influence of the Conjugated Structure and Halogen Atoms of Poly-Iron-Phthalocyanine on the Oxygen Reduction Reaction by X-ray Absorption Spectroscopy and Density Functional Theory. Electrochimica Acta, 2015, 154, 102-109.	5.2	11
350	Probing the influence of the center atom coordination structure in iron phthalocyanine multi-walled carbon nanotube-based oxygen reduction reaction catalysts by X-ray absorption fine structure spectroscopy. Journal of Power Sources, 2015, 291, 20-28.	7.8	46
351	Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nature Communications, 2015, 6, 8064.	12.8	270
352	Where Does the Transformation of Precipitated Ceria Nanoparticles in Hydroponic Plants Take Place?. Environmental Science & Technology, 2015, 49, 10667-10674.	10.0	82
353	Novel PtO decorated MWCNTs as a highly efficient counter electrode for dye-sensitized solar cells. RSC Advances, 2015, 5, 8307-8310.	3.6	5
354	Introduction of amino groups into acid-resistant MOFs for enhanced U(<scp>vi</scp>) sorption. Journal of Materials Chemistry A, 2015, 3, 525-534.	10.3	378
355	Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber. Nanotoxicology, 2015, 9, 262-270.	3.0	123
356	Species-specific toxicity of ceria nanoparticles to <i>Lactuca</i> plants. Nanotoxicology, 2015, 9, 1-8.	3.0	106
357	Stable Isolated Metal Atoms as Active Sites for Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2014, 20, 2088-2088.	3.3	3
358	Unidirectional suppression of hydrogen oxidation on oxidized platinum clusters. Nature Communications, 2013, 4, 2500.	12.8	197
359	Active sites on hydrogen evolution photocatalyst. Journal of Materials Chemistry A, 2013, 1, 15258.	10.3	96
360	Implications of Mercury Speciation in Thiosulfate Treated Plants. Environmental Science & Technology, 2012, 46, 5361-5368.	10.0	72

#	Article	IF	CITATIONS
361	Construction of highly durable electrocatalysts by pore confinement and anchoring effect for the oxygen reduction reaction. New Journal of Chemistry, 0, , .	2.8	2