Qiangbin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/760639/publications.pdf

Version: 2024-02-01

166 papers 13,456 citations

18482 62 h-index 22832 112 g-index

170 all docs

170 docs citations

times ranked

170

15100 citing authors

#	Article	IF	CITATIONS
1	Ag ₂ S Quantum Dot: A Bright and Biocompatible Fluorescent Nanoprobe in the Second Near-Infrared Window. ACS Nano, 2012, 6, 3695-3702.	14.6	669
2	Inâ€Vivo Fluorescence Imaging with Ag ₂ S Quantum Dots in the Second Nearâ€Infrared Region. Angewandte Chemie - International Edition, 2012, 51, 9818-9821.	13.8	645
3	Near-Infrared Photoluminescent Ag ₂ S Quantum Dots from a Single Source Precursor. Journal of the American Chemical Society, 2010, 132, 1470-1471.	13.7	577
4	Surface Plasmon Resonance Enhanced Light Absorption and Photothermal Therapy in the Second Near-Infrared Window. Journal of the American Chemical Society, 2014, 136, 15684-15693.	13.7	575
5	Advanced Fluorescence Imaging Technology in the Near-Infrared-II Window for Biomedical Applications. Journal of the American Chemical Society, 2020, 142, 14789-14804.	13.7	540
6	Single-Layer Single-Crystalline SnSe Nanosheets. Journal of the American Chemical Society, 2013, 135, 1213-1216.	13.7	433
7	Urchin-like CoP Nanocrystals as Hydrogen Evolution Reaction and Oxygen Reduction Reaction Dual-Electrocatalyst with Superior Stability. Nano Letters, 2015, 15, 7616-7620.	9.1	425
8	InÂvivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials, 2014, 35, 393-400.	11.4	366
9	Au Nanorod Helical Superstructures with Designed Chirality. Journal of the American Chemical Society, 2015, 137, 457-462.	13.7	289
10	NiFe Alloy Nanoparticles with hcp Crystal Structure Stimulate Superior Oxygen Evolution Reaction Electrocatalytic Activity. Angewandte Chemie - International Edition, 2019, 58, 6099-6103.	13.8	267
11	Facile Synthesis of Highly Photoluminescent Ag ₂ Se Quantum Dots as a New Fluorescent Probe in the Second Near-Infrared Window for in Vivo Imaging. Chemistry of Materials, 2013, 25, 2503-2509.	6.7	257
12	Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials, 2013, 34, 3639-3646.	11.4	228
13	Bifacial DNA Origami-Directed Discrete, Three-Dimensional, Anisotropic Plasmonic Nanoarchitectures with Tailored Optical Chirality. Journal of the American Chemical Society, 2013, 135, 11441-11444.	13.7	208
14	Controlled Synthesis of Ag ₂ S Quantum Dots and Experimental Determination of the Exciton Bohr Radius. Journal of Physical Chemistry C, 2014, 118, 4918-4923.	3.1	206
15	Tracking of Transplanted Human Mesenchymal Stem Cells in Living Mice using Nearâ€Infrared Ag ₂ S Quantum Dots. Advanced Functional Materials, 2014, 24, 2481-2488.	14.9	198
16	Challenges and Opportunities for Intravital Near-Infrared Fluorescence Imaging Technology in the Second Transparency Window. ACS Nano, 2018, 12, 9654-9659.	14.6	198
17	Rational Tuning the Optical Properties of Metal Sulfide Nanocrystals and Their Applications. Chemistry of Materials, 2013, 25, 1166-1178.	6.7	164
18	Polypeptide-Conjugated Second Near-Infrared Organic Fluorophore for Image-Guided Photothermal Therapy. ACS Nano, 2019, 13, 3691-3702.	14.6	159

#	Article	IF	CITATIONS
19	Real-Time Monitoring Surface Chemistry-Dependent <i>In Vivo</i> Behaviors of Protein Nanocages via Encapsulating an NIR-II Ag ₂ S Quantum Dot. ACS Nano, 2015, 9, 12255-12263.	14.6	155
20	Matchstickâ€Shaped Ag ₂ S–ZnS Heteronanostructures Preserving both UV/Blue and Nearâ€Infrared Photoluminescence. Angewandte Chemie - International Edition, 2011, 50, 7115-7118.	13.8	153
21	DNAâ€Tileâ€Directed Selfâ€Assembly of Quantum Dots into Twoâ€Dimensional Nanopatterns. Angewandte Chemie - International Edition, 2008, 47, 5157-5159.	13.8	151
22	An Activatable NIRâ€II Nanoprobe for Inâ€Vivo Early Realâ€Time Diagnosis of Traumatic Brain Injury. Angewandte Chemie - International Edition, 2020, 59, 247-252.	13.8	151
23	Controllable synthesis of monodispersed silver nanoparticles as standards for quantitative assessment of their cytotoxicity. Biomaterials, 2012, 33, 1714-1721.	11.4	150
24	Selfâ€Assembly of Chiral Plasmonic Nanostructures. Advanced Materials, 2016, 28, 10499-10507.	21.0	144
25	Coâ€Nâ€Doped Mesoporous Carbon Hollow Spheres as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction. Small, 2017, 13, 1602507.	10.0	143
26	Preoperative Detection and Intraoperative Visualization of Brain Tumors for More Precise Surgery: A New Dual-Modality MRI and NIR Nanoprobe. Small, 2015, 11, 4517-4525.	10.0	128
27	Double-Walled Au Nanocage/SiO ₂ Nanorattles: Integrating SERS Imaging, Drug Delivery and Photothermal Therapy. Small, 2015, 11, 985-993.	10.0	120
28	Colloidal Alloyed Quantum Dots with Enhanced Photoluminescence Quantum Yield in the NIR-II Window. Journal of the American Chemical Society, 2021, 143, 2601-2607.	13.7	118
29	Tumor Microenvironmentâ€Activated NIRâ€II Nanotheranostic System for Precise Diagnosis and Treatment of Peritoneal Metastasis. Angewandte Chemie - International Edition, 2020, 59, 7219-7223.	13.8	115
30	Real-time in vivo visualization of tumor therapy by a near-infrared-II Ag2S quantum dot-based theranostic nanoplatform. Nano Research, 2015, 8, 1637-1647.	10.4	113
31	Programmable Chemotherapy and Immunotherapy against Breast Cancer Guided by Multiplexed Fluorescence Imaging in the Second Nearâ€Infrared Window. Advanced Materials, 2018, 30, e1804437.	21.0	113
32	1.82 wt.% Pt/N, P co-doped carbon overwhelms 20 wt.% Pt/C as a high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Research, 2017, 10, 238-246.	10.4	106
33	Chiral Plasmonic Nanostructures Enabled by Bottom-Up Approaches. Annual Review of Physical Chemistry, 2019, 70, 275-299.	10.8	106
34	A Facile One-Step in situ Functionalization of Quantum Dots with Preserved Photoluminescence for Bioconjugation. Journal of the American Chemical Society, 2007, 129, 6380-6381.	13.7	105
35	Fabrication of Nanoarchitectures Templated by Virusâ€Based Nanoparticles: Strategies and Applications. Small, 2014, 10, 230-245.	10.0	104
36	Novel multifunctional NaYF4:Er3+,Yb3+/PEGDA hybrid microspheres: NIR-light-activated photopolymerization and drug delivery. Chemical Communications, 2013, 49, 1527.	4.1	101

#	Article	lF	CITATIONS
37	Engineered Multifunctional Nanomedicine for Simultaneous Stereotactic Chemotherapy and Inhibited Osteolysis in an Orthotopic Model of Bone Metastasis. Advanced Materials, 2017, 29, 1605754.	21.0	99
38	InÂvivo real-time visualization of mesenchymal stem cells tropism for cutaneous regeneration using NIR-II fluorescence imaging. Biomaterials, 2015, 53, 265-273.	11.4	95
39	Frameâ€Guided Assembly of Vesicles with Programmed Geometry and Dimensions. Angewandte Chemie - International Edition, 2014, 53, 2607-2610.	13.8	92
40	NIRâ€II Fluorescent Selfâ€Assembled Peptide Nanochain for Ultrasensitive Detection of Peritoneal Metastasis. Angewandte Chemie - International Edition, 2019, 58, 11001-11006.	13.8	91
41	Circular dichroism from single plasmonic nanostructures with extrinsic chirality. Nanoscale, 2014, 6, 14244-14253.	5.6	90
42	Manganese-Doped Ag ₂ S-ZnS Heteronanostructures. Chemistry of Materials, 2012, 24, 2407-2413.	6.7	87
43	Ultrathin single crystal ZnS nanowires. Chemical Communications, 2010, 46, 8941.	4.1	84
44	A novel photoacoustic nanoprobe of ICG@PEG-Ag $<$ sub $>$ 2 $<$ /sub $>$ 5 for atherosclerosis targeting and imaging in vivo. Nanoscale, 2016, 8, 12531-12539.	5.6	84
45	Site-Specific Surface Functionalization of Gold Nanorods Using DNA Origami Clamps. Journal of the American Chemical Society, 2016, 138, 1764-1767.	13.7	84
46	Enhanced Nanodrug Delivery to Solid Tumors Based on a Tumor Vasculatureâ€Targeted Strategy. Advanced Functional Materials, 2016, 26, 4192-4200.	14.9	82
47	Quantum Dot Bioconjugation during Core–Shell Synthesis. Angewandte Chemie - International Edition, 2008, 47, 316-319.	13.8	80
48	Generalized synthesis of metal sulfide nanocrystals from single-source precursors: size, shape and chemical composition control and their properties. CrystEngComm, 2011, 13, 4572.	2.6	80
49	Advanced Nearâ€Infrared Light for Monitoring and Modulating the Spatiotemporal Dynamics of Cell Functions in Living Systems. Advanced Science, 2020, 7, 1903783.	11.2	79
50	Preparation of Large Transparent Silica Monoliths with Embedded Photoluminescent CdSe@ZnS Core/Shell Quantum Dots. Chemistry of Materials, 2005, 17, 4762-4764.	6.7	78
51	Recent Advances in Tracking the Transplanted Stem Cells Using Nearâ€Infrared Fluorescent Nanoprobes: Turning from the First to the Second Nearâ€Infrared Window. Advanced Healthcare Materials, 2018, 7, e1800497.	7.6	77
52	Programmable Supraâ€Assembly of a DNA Surface Adapter for Tunable Chiral Directional Selfâ€Assembly of Gold Nanorods. Angewandte Chemie - International Edition, 2017, 56, 14632-14636.	13.8	76
53	An NIRâ€II Fluorescence/Dual Bioluminescence Multiplexed Imaging for In Vivo Visualizing the Location, Survival, and Differentiation of Transplanted Stem Cells. Advanced Functional Materials, 2019, 29, 1806546.	14.9	76
54	Spiral Patterning of Au Nanoparticles on Au Nanorod Surface to Form Chiral AuNR@AuNP Helical Superstructures Templated by DNA Origami. Advanced Materials, 2017, 29, 1606533.	21.0	71

#	Article	IF	CITATIONS
55	MoSe2 porous microspheres comprising monolayer flakes with high electrocatalytic activity. Nano Research, 2015, 8, 1108-1115.	10.4	70
56	Green synthesis of NiFe LDH/Ni foam at room temperature for highly efficient electrocatalytic oxygen evolution reaction. Science China Materials, 2019, 62, 681-689.	6.3	70
57	Rapid Unperturbedâ€Tissue Analysis for Intraoperative Cancer Diagnosis Using an Enzymeâ€Activated NIRâ€I Nanoprobe. Angewandte Chemie - International Edition, 2021, 60, 2637-2642.	13.8	70
58	The protein corona protects against size- and dose-dependent toxicity of amorphous silica nanoparticles. Beilstein Journal of Nanotechnology, 2014, 5, 1380-1392.	2.8	68
59	A Nanoformulationâ€Mediated Multifunctional Stem Cell Therapy with Improved Betaâ€Amyloid Clearance and Neural Regeneration for Alzheimer's Disease. Advanced Materials, 2021, 33, e2006357.	21.0	67
60	Activatable Rare Earth Near-Infrared-II Fluorescence Ratiometric Nanoprobes. Nano Letters, 2021, 21, 6576-6583.	9.1	67
61	Auâ€Doped Ag ₂ Te Quantum Dots with Bright NIRâ€IIb Fluorescence for In Situ Monitoring of Angiogenesis and Arteriogenesis in a Hindlimb Ischemic Model. Advanced Materials, 2021, 33, e2103953.	21.0	67
62	Reconfigurable Plasmonic Diastereomers Assembled by DNA Origami. ACS Nano, 2019, 13, 13702-13708.	14.6	66
63	Strong Chiroptical Activities in Gold Nanorod Dimers Assembled Using DNA Origami Templates. ACS Photonics, 2015, 2, 392-397.	6.6	63
64	Selective in Situ Assembly of Viral Protein onto DNA Origami. Journal of the American Chemical Society, 2018, 140, 8074-8077.	13.7	63
65	Diverse-shaped iron sulfide nanostructures synthesized from a single source precursor approach. CrystEngComm, 2010, 12, 3658.	2.6	62
66	Revealing the Fate of Transplanted Stem Cells In Vivo with a Novel Optical Imaging Strategy. Small, 2018, 14, 1702679.	10.0	60
67	Controlled Synthesis of Ag ₂ Te@Ag ₂ S Core–Shell Quantum Dots with Enhanced and Tunable Fluorescence in the Second Nearâ€Infrared Window. Small, 2020, 16, e2001003.	10.0	60
68	Synthesis of Deep-Red-Emitting CdSe Quantum Dots and General Non-Inverse-Square Behavior of Quantum Confinement in CdSe Quantum Dots. Chemistry of Materials, 2006, 18, 5764-5767.	6.7	59
69	Selective Synthesis of Ternary Copper–Antimony Sulfide Nanocrystals. Inorganic Chemistry, 2013, 52, 12958-12962.	4.0	58
70	Magnetic resonance imaging of Fe3O4@SiO2-labeled human mesenchymal stem cells in mice at 11.7ÂT. Biomaterials, 2013, 34, 3010-3019.	11.4	58
71	DNAâ€Directed Gold Nanodimers with Tunable Sizes and Interparticle Distances and Their Surface Plasmonic Properties. Small, 2013, 9, 2308-2315.	10.0	58
72	Controlled synthesis of porous spinel cobalt manganese oxides as efficient oxygen reduction reaction electrocatalysts. Nano Research, 2016, 9, 207-213.	10.4	56

#	Article	IF	CITATIONS
73	Fates of Fe3O4 and Fe3O4@SiO2 nanoparticles in human mesenchymal stem cells assessed by synchrotron radiation-based techniques. Biomaterials, 2014, 35, 6412-6421.	11.4	54
74	The osteogenic effect of bone morphogenetic protein-2 on the collagen scaffold conjugated with antibodies. Journal of Controlled Release, 2010, 141, 30-37.	9.9	53
75	Controlled synthesis of AgInS2 nanocrystals and their application in organic–inorganic hybrid photodetectors. CrystEngComm, 2013, 15, 6443.	2.6	52
76	Photonic interaction between quantum dots and gold nanoparticles in discrete nanostructures through DNA directed self-assembly. Chemical Communications, 2010, 46, 240-242.	4.1	51
77	Site-Selective Nucleation and Controlled Growth of Gold Nanostructures in Tobacco Mosaic Virus Nanotubulars. Small, 2015, 11, 2505-2509.	10.0	51
78	Tunable, Discrete, Threeâ€Dimensional Hybrid Nanoarchitectures. Angewandte Chemie - International Edition, 2011, 50, 4202-4205.	13.8	50
79	Spontaneous Self-Assembly of Silver Nanoparticles into Lamellar Structured Silver Nanoleaves. ACS Nano, 2013, 7, 3053-3060.	14.6	50
80	Advanced NIRâ€I Fluorescence Imaging Technology for In Vivo Precision Tumor Theranostics. Advanced Therapeutics, 2019, 2, 1900053.	3.2	50
81	Disulfide Bond: Dramatically Enhanced Assembly Capability and Structural Stability of Tobacco Mosaic Virus Nanorods. Biomacromolecules, 2013, 14, 2593-2600.	5.4	49
82	DNAâ€Based Adaptive Plasmonic Logic Gates. Angewandte Chemie - International Edition, 2020, 59, 15038-15042.	13.8	47
83	A generalized strategy for controlled synthesis of ternary metal sulfide nanocrystals. New Journal of Chemistry, 2014, 38, 77-83.	2.8	44
84	Ultralarge Single-Layer Porous Protein Nanosheet for Precise Nanosize Separation. Nano Letters, 2018, 18, 6563-6569.	9.1	44
85	Atomic-scale Pt clusters decorated on porous α-Ni(OH)2 nanowires as highly efficient electrocatalyst for hydrogen evolution reaction. Science China Materials, 2017, 60, 1121-1128.	6.3	39
86	Chemical Valenceâ€Dependent Electrocatalytic Activity for Oxygen Evolution Reaction: A Case of Nickel Sulfides Hybridized with N and S Coâ€Doped Carbon Nanoparticles. Small, 2018, 14, 1703273.	10.0	39
87	Pbâ€Doped Ag ₂ Se Quantum Dots with Enhanced Photoluminescence in the NIRâ€I Window. Small, 2021, 17, e2006111.	10.0	39
88	Neodymium-doped NaHoF ₄ nanoparticles as near-infrared luminescent/T ₂ -weighted MR dual-modal imaging agents in vivo. Journal of Materials Chemistry B, 2017, 5, 504-510.	5.8	38
89	Precise Selfâ€Assembly of Nanoparticles into Ordered Nanoarchitectures Directed by Tobacco Mosaic Virus Coat Protein. Advanced Materials, 2019, 31, e1901485.	21.0	38
90	Metal ion redox potential plays an important role in high-yield synthesis of monodisperse silver nanoparticles. Chemical Communications, 2012, 48, 4728.	4.1	36

#	Article	IF	Citations
91	Monofunctionalization of Protein Nanocages. Journal of the American Chemical Society, 2011, 133, 20040-20043.	13.7	35
92	Origin of the Plasmonic Chirality of Gold Nanorod Trimers Templated by DNA Origami. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26835-26840.	8.0	35
93	DNA Origami-Directed, Discrete Three-Dimensional Plasmonic Tetrahedron Nanoarchitectures with Tailored Optical Chirality. ACS Applied Materials & Samp; Interfaces, 2014, 6, 5388-5392.	8.0	33
94	Self-Assembly of Protein Crystals with Different Crystal Structures Using Tobacco Mosaic Virus Coat Protein as a Building Block. ACS Nano, 2018, 12, 1673-1679.	14.6	33
95	Threeâ€Dimensional Gold Nanoparticle Clusters with Tunable Cores Templated by a Viral Protein Scaffold. Small, 2012, 8, 3832-3838.	10.0	32
96	Effects of simvastatin-loaded polymeric micelles on human osteoblast-like MG-63 cells. Colloids and Surfaces B: Biointerfaces, 2013, 102, 420-427.	5.0	31
97	Precise Examination of Peripheral Vascular Disease for Diabetics with a Novel Multiplexed NIR-II Fluorescence Imaging Technology. Nano Today, 2022, 43, 101378.	11.9	31
98	One-pot polymerase chain reaction with gold nanoparticles for rapid and ultrasensitive DNA detection. Nano Research, 2010, 3, 557-563.	10.4	30
99	Toward Precise Manipulation of DNA–Protein Hybrid Nanoarchitectures. Small, 2019, 15, e1804044.	10.0	30
100	Programming Dynamic Assembly of Viral Proteins with DNA Origami. Journal of the American Chemical Society, 2020, 142, 5929-5932.	13.7	30
101	Single-molecule level binding force between collagen and collagen binding domain-growth factor conjugates. Biomaterials, 2013, 34, 6139-6146.	11.4	28
102	DNA-programmed self-assembly of photonic nanoarchitectures. NPG Asia Materials, 2014, 6, e97-e97.	7.9	28
103	Glutathione-capped quantum dots for plasma membrane labeling and membrane potential imaging. Nano Research, 2019, 12, 1321-1326.	10.4	28
104	DNA-Directed Gold Nanodimers with Tailored Ensemble Surface-Enhanced Raman Scattering Properties. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10423-10427.	8.0	27
105	From mouse to mouseâ€ear cress: Nanomaterials as vehicles in plant biotechnology. Exploration, 2021, 1, 9-20.	11.0	27
106	A Targeted Activatable NIRâ€IIb Nanoprobe for Highly Sensitive Detection of Ischemic Stroke in a Photothrombotic Stroke Model. Advanced Healthcare Materials, 2021, 10, e2001544.	7.6	26
107	DNA Origami Directed Largeâ€Scale Fabrication of Nanostructures Resembling Room Temperature Singleâ€Electron Transistors. Small, 2013, 9, 3567-3571.	10.0	25
108	Revealing the Role of Electrocatalyst Crystal Structure on Oxygen Evolution Reaction with Nickel as an Example. Small, 2018, 14, e1802895.	10.0	25

#	Article	IF	CITATIONS
109	Tuning the structural asymmetries of three-dimensional gold nanorod assemblies. Chemical Communications, 2015, 51, 13627-13629.	4.1	24
110	Tailoring the Selfâ€Assembly Behaviors of Recombinant Tobacco Mosaic Virus by Rationally Introducing Covalent Bonding at the Protein–Protein Interface. Small, 2016, 12, 4955-4959.	10.0	24
111	Encapsulation of Inorganic Nanomaterials inside Virus-Based Nanoparticles for Bioimaging. Nanotheranostics, 2017, 1, 358-368.	5.2	24
112	All-in-one theranostic nanoplatform with controlled drug release and activated MRI tracking functions for synergistic NIR-II hyperthermia-chemotherapy of tumors. Nano Research, 2019, 12, 2971-2981.	10.4	24
113	An Activatable NIRâ€II Nanoprobe for Inâ€Vivo Early Realâ€Time Diagnosis of Traumatic Brain Injury. Angewandte Chemie, 2020, 132, 253-258.	2.0	24
114	Controlled Self-Assembly of Proteins into Discrete Nanoarchitectures Templated by Gold Nanoparticles via Monovalent Interfacial Engineering. ACS Applied Materials & Diterfaces, 2015, 7, 11024-11031.	8.0	23
115	NIRâ€II Fluorescent Selfâ€Assembled Peptide Nanochain for Ultrasensitive Detection of Peritoneal Metastasis. Angewandte Chemie, 2019, 131, 11117-11122.	2.0	21
116	Layer-by-layer growth of superparamagnetic, fluorescent barcode nanospheres. Nanotechnology, 2007, 18, 405604.	2.6	20
117	Programmable Supraâ€Assembly of a DNA Surface Adapter for Tunable Chiral Directional Selfâ€Assembly of Gold Nanorods. Angewandte Chemie, 2017, 129, 14824-14828.	2.0	20
118	Modular Assembly of Plasmonic Nanoparticles Assisted by DNA Origami. Langmuir, 2018, 34, 14963-14968.	3.5	20
119	Controllable synthesis of MnS nanocrystals from a single-source precursor. Journal of Colloid and Interface Science, 2012, 377, 13-17.	9.4	19
120	Cell Nucleus Penetration by Quantum Dots Induced by Nuclear Staining Organic Fluorophore and UVâ€rradiation. Advanced Materials, 2008, 20, 3468-3473.	21.0	18
121	Controllable growth of Ag ₂ S–CdS heteronanostructures. CrystEngComm, 2014, 16, 9501-9505.	2.6	18
122	Polydopamine directed MnO@C microstructures as electrode for lithium ion battery. Science China Chemistry, 2016, 59, 122-127.	8.2	17
123	Precise Fabrication of De Novo Nanoparticle Lattices on Dynamic 2D Protein Crystalline Lattices. Nano Letters, 2020, 20, 1154-1160.	9.1	16
124	Chiral nanomaterials: evolving rapidly from concepts to applications. Materials Advances, 2022, 3, 3677-3679.	5.4	16
125	Insights into Stabilization of a Viral Protein Cage in Templating Complex Nanoarchitectures: Roles of Disulfide Bonds. Small, 2014, 10, 536-543.	10.0	15
126	Towards Active Self-Assembly Through DNA Nanotechnology. Topics in Current Chemistry, 2020, 378, 33.	5.8	15

#	Article	IF	Citations
127	Assembling gold nanobipyramids into chiral plasmonic nanostructures with DNA origami. Chemical Communications, 2021, 57, 6201-6204.	4.1	15
128	Nanofriction properties of molecular deposition films. Science in China Series B: Chemistry, 2000, 43, 137-142.	0.8	14
129	Preparation of photostable quantum dot-polystyrene microbeads through covalent organosilane coupling of CdSe@Zns quantum dots. Journal of Materials Science, 2009, 44, 816-820.	3.7	14
130	NiFe Alloy Nanoparticles with hcp Crystal Structure Stimulate Superior Oxygen Evolution Reaction Electrocatalytic Activity. Angewandte Chemie, 2019, 131, 6160-6164.	2.0	14
131	AgAuSe quantum dots with absolute photoluminescence quantum yield of 87.2%: The effect of capping ligand chain length. Nano Research, 2022, 15, 8555-8563.	10.4	14
132	Optically Active AuNR@Ag Core–Shell Nanoparticles and Hierarchical Assembly via DNA-Mediated Surface Chemistry. ACS Applied Materials & Surface Chemist	8.0	13
133	Cationic Polyelectrolyte Mediated Synthesis of MnO ₂ â€Based Core–Shell Structures as Activatable MRI Theranostic Platform for Tumor Cell Ablation. Particle and Particle Systems Characterization, 2018, 35, 1800078.	2.3	13
134	Tumor Microenvironmentâ€Activated NIRâ€II Nanotheranostic System for Precise Diagnosis and Treatment of Peritoneal Metastasis. Angewandte Chemie, 2020, 132, 7286-7290.	2.0	13
135	Finite Assembly of Threeâ€Dimensional DNA Hierarchical Nanoarchitectures through Orthogonal and Directional Bonding. Angewandte Chemie - International Edition, 2022, 61, e202116416.	13.8	13
136	DNAâ€Based Adaptive Plasmonic Logic Gates. Angewandte Chemie, 2020, 132, 15148-15152.	2.0	12
137	Gram-scale synthesis of nanotherapeutic agents for CT/T1-weighted MRI bimodal imaging guided photothermal therapy. Nano Research, 2017, 10, 3124-3135.	10.4	11
138	Noncovalent Self-Assembly of Protein Crystals with Tunable Structures. Nano Letters, 2021, 21, 1749-1757.	9.1	11
139	Coassembly of Tobacco Mosaic Virus Coat Proteins into Nanotubes with Uniform Length and Improved Physical Stability. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13192-13196.	8.0	10
140	PET imaging of metabolic changes after neural stem cells and GABA progenitor cells transplantation in a rat model of temporal lobe epilepsy. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 2392-2397.	6.4	10
141	A Cascade Targeted and Activatable NIR-II Nanoprobe for Highly Sensitive Detection of Acute Myeloid Leukemia in an Orthotopic Model. CCS Chemistry, 2021, 3, 895-903.	7.8	10
142	Large-Scale Synthesis of Single Crystalline CuSb(S _{<i>x</i>} Se _{1–<i>x</i>}) ₂ Nanosheets with Tunable Composition. Journal of Physical Chemistry C, 2015, 119, 1496-1499.	3.1	8
143	Rapid Unperturbedâ€Tissue Analysis for Intraoperative Cancer Diagnosis Using an Enzymeâ€Activated NIRâ€II Nanoprobe. Angewandte Chemie, 2021, 133, 2669-2674.	2.0	8
144	Long-term chemical biotransformation and pathways of Cd-based quantum dots in mice. Nano Today, 2022, 44, 101504.	11.9	7

#	Article	IF	Citations
145	Exploration on the safety assessment of nanomaterials in China. Interface Focus, 2012, 2, 387-392.	3.0	6
146	Colloidal Nanocrystals Fluoresced by Surface Coordination Complexes. Scientific Reports, 2014, 4, 5480.	3.3	6
147	Dual Functional Modification of Alkaline Amino Acids Induces the Selfâ€Assembly of Cylinderâ€Like Tobacco Mosaic Virus Coat Proteins into Gearâ€Like Architectures. Small, 2019, 15, e1805543.	10.0	6
148	Recent Progress of Hybrid Optical Probes for Neural Membrane Potential Imaging. Biotechnology Journal, 2020, 15, 2000086.	3.5	6
149	Interfacially Bridging Covalent Network Yields Hyperstable and Ultralong Virusâ€Based Fibers for Engineering Functional Materials. Angewandte Chemie - International Edition, 2020, 59, 18249-18255.	13.8	4
150	Whole-Body Fluorescence Imaging in the Near-Infrared Window. Advances in Experimental Medicine and Biology, 2021, 3233, 83-108.	1.6	4
151	Catalytic DNA Origami-based Chiral Plasmonic Biosensor. Chemical Research in Chinese Universities, 2021, 37, 914-918.	2.6	3
152	Properties of Quantum Dots: A New Nanoprobe for Bioimaging. , 2014, , 1263-1298.		2
153	Interfacially Bridging Covalent Network Yields Hyperstable and Ultralong Virusâ€Based Fibers for Engineering Functional Materials. Angewandte Chemie, 2020, 132, 18406-18412.	2.0	2
154	Near Infrared Ag2S Quantum Dots: Synthesis, Functionalization, and In Vivo Stem Cell Tracking Applications., 2020,, 279-304.		2
155	Nanowires and Nanoparticle Chains Inside Tubular Viral Templates. Methods in Molecular Biology, 2018, 1776, 215-227.	0.9	1
156	Finite Assembly of Threeâ€Dimensional DNA Hierarchical Nanoarchitectures through Orthogonal and Directional Bonding. Angewandte Chemie, 2022, 134, .	2.0	1
157	DNA Origami: DNA Origami Directed Large-Scale Fabrication of Nanostructures Resembling Room Temperature Single-Electron Transistors (Small 21/2013). Small, 2013, 9, 3724-3724.	10.0	0
158	Templated Assembly: Fabrication of Nanoarchitectures Templated by Virusâ€Based Nanoparticles: Strategies and Applications (Small 2/2014). Small, 2014, 10, 416-416.	10.0	0
159	Monitoring in Vivo Behaviors of Protein Nanocages via Encapsulating an NIR-II Ag2S Quantum Dot. Procedia Technology, 2017, 27, 57-58.	1.1	0
160	Bioimaging and Biosensing in Near-Infrared-II Window. , 2021, , 401-451.		0
161	Controlled synthesis of metal sulfide nanocrystals by thermal decomposition of single-source precursors. Scientia Sinica Chimica, 2013, 43, 1601-1613.	0.4	0

¹⁶² æ—æœºåŠå⁻¹¼ä¹½"纳米晶å...%妿€§è°çš"设计ã€è°∱控åŠå...¶ç"Ÿç‰©åŒ»å¦åº"ç"". Scientia Sinica Cohimica, 20014, 44, 18

#	Article	IF	CITATIONS
163	Ag2S Quantum Dots for Advanced In Vivo Imaging: Seeing is Believing. , 2017, , .		O
164	Assembly, Motion, and Coupling of DNA-Coded Plasmonic Nanoparticles. , 2022, , 1-28.		0
165	Phase transferring atomically precise gold nanoclusters to aqueous solution via single stranded DNA. Science China Chemistry, 2022, 65, 1003-1004.	8.2	O
166	Singleâ€particle fluorescence tracking combined with TrackMate assay reveals highly heterogeneous and discontinuous lysosomal transport in freely orientated axons. Biotechnology Journal, 0, , 2200006.	3.5	0