Iliyan D Iliev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7604889/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Peritoneal Effluent Cell-Free DNA Sequencing in Peritoneal Dialysis Patients With and Without Peritonitis. Kidney Medicine, 2022, 4, 100383.	2.0	2
2	Mycobiota–host immune interactions in IBD: coming out of the shadows. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 91-92.	17.8	19
3	Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature, 2022, 603, 672-678.	27.8	98
4	Mucosal fungi promote gut barrier function and social behavior via Type 17 immunity. Cell, 2022, 185, 831-846.e14.	28.9	133
5	Effects of Intestinal Fungi and Viruses on Immune Responses and Inflammatory Bowel Diseases. Gastroenterology, 2021, 160, 1050-1066.	1.3	70
6	The cancer microbiome atlas: a pan-cancer comparative analysis to distinguish tissue-resident microbiota from contaminants. Cell Host and Microbe, 2021, 29, 281-298.e5.	11.0	109
7	Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell, 2021, 184, 1017-1031.e14.	28.9	113
8	Voices of biotech research. Nature Biotechnology, 2021, 39, 281-286.	17.5	3
9	Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn's disease. Nature Microbiology, 2021, 6, 1493-1504.	13.3	77
10	From Birth and Throughout Life: Fungal Microbiota in Nutrition and Metabolic Health. Annual Review of Nutrition, 2020, 40, 323-343.	10.1	29
11	Macrophages Maintain Epithelium Integrity by Limiting Fungal Product Absorption. Cell, 2020, 183, 411-428.e16.	28.9	76
12	Editorial overview: Microbiota united-bacteria, fungi and host responses come into focus. Current Opinion in Microbiology, 2020, 56, vi-viii.	5.1	0
13	Fungal Trans-kingdom Dynamics Linked to Responsiveness to Fecal Microbiota Transplantation (FMT) Therapy in Ulcerative Colitis. Cell Host and Microbe, 2020, 27, 823-829.e3.	11.0	110
14	Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science, 2019, 365, .	12.6	360
15	Modulation of the fungal mycobiome is regulated by the chitin-binding receptor FIBCD1. Journal of Experimental Medicine, 2019, 216, 2689-2700.	8.5	23
16	Gut Mycobiota in Immunity and Inflammatory Disease. Immunity, 2019, 50, 1365-1379.	14.3	158
17	Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis. Science, 2019, 363, .	12.6	121
18	Profound mycobiome differences between segregated mouse colonies do not influence Th17 responses to a newly introduced gut fungal commensal. Fungal Genetics and Biology, 2019, 127, 45-49.	2.1	17

Iliyan D Iliev

#	Article	IF	CITATIONS
19	Malassezia Is Associated with Crohn's Disease and Exacerbates Colitis in Mouse Models. Cell Host and Microbe, 2019, 25, 377-388.e6.	11.0	283
20	Gut mycobiota under scrutiny: fungal symbionts or environmental transients?. Current Opinion in Microbiology, 2019, 50, 79-86.	5.1	41
21	CX3CR1 ⁺ mononuclear phagocytes control immunity to intestinal fungi. Science, 2018, 359, 232-236.	12.6	217
22	Sensing Microbial Viability through Bacterial RNA Augments T Follicular Helper Cell and Antibody Responses. Immunity, 2018, 48, 584-598.e5.	14.3	71
23	Response to Fungal Dysbiosis by Gut-Resident CX3CR1+ Mononuclear Phagocytes Aggravates Allergic Airway Disease. Cell Host and Microbe, 2018, 24, 847-856.e4.	11.0	95
24	Macrophage interactions with fungi and bacteria in inflammatory bowel disease. Current Opinion in Gastroenterology, 2018, 34, 392-397.	2.3	20
25	Anti-α4β7 therapy targets lymphoid aggregates in the gastrointestinal tract of HIV-1–infected individuals. Science Translational Medicine, 2018, 10, .	12.4	65
26	Fungal dysbiosis: immunity and interactions at mucosal barriers. Nature Reviews Immunology, 2017, 17, 635-646.	22.7	283
27	Regulation of inflammation by microbiota interactions with the host. Nature Immunology, 2017, 18, 851-860.	14.5	467
28	Candidalysin sets off the innate alarm. Science Immunology, 2017, 2, .	11.9	9
29	Immunity against fungi. JCI Insight, 2017, 2, .	5.0	105
30	Immunological Consequences of Intestinal Fungal Dysbiosis. Cell Host and Microbe, 2016, 19, 865-873.	11.0	329
31	Mycobiome: Approaches to analysis of intestinal fungi. Journal of Immunological Methods, 2015, 421, 112-121.	1.4	145
32	The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor. Nature Immunology, 2015, 16, 599-608.	14.5	153
33	Dectin-1 Exerts Dual Control in the Gut. Cell Host and Microbe, 2015, 18, 139-141.	11.0	12
34	Poorly Cross-Linked Peptidoglycan in MRSA Due to mecA Induction Activates the Inflammasome and Exacerbates Immunopathology. Cell Host and Microbe, 2015, 18, 604-612.	11.0	58
35	Characterization of Bacterial and Fungal Microbiome in Children with Hirschsprung Disease with and without a History of Enterocolitis: A Multicenter Study. PLoS ONE, 2015, 10, e0124172.	2.5	118
36	The mycobiota: interactions between commensal fungi and the host immune system. Nature Reviews Immunology, 2014, 14, 405-416.	22.7	525

Iliyan D Iliev

#	Article	IF	CITATIONS
37	Striking a balance: fungal commensalism versus pathogenesis. Current Opinion in Microbiology, 2013, 16, 366-373.	5.1	59
38	Interactions Between Commensal Fungi and the C-Type Lectin Receptor Dectin-1 Influence Colitis. Science, 2012, 336, 1314-1317.	12.6	886
39	Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut, 2010, 59, 595-604.	12.1	313
40	Macrophages Maintain Epithelial Barrier Integrity in the Distal Colon by Limiting the Absorption of Fluids Containing Fungal Products. SSRN Electronic Journal, 0, , .	0.4	0