
Carsten Hoffmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7604864/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A FlAsH-based FRET approach to determine G protein–coupled receptor activation in living cells. Nature Methods, 2005, 2, 171-176.	19.0	471
2	Lack of beta-arrestin signaling in the absence of active G proteins. Nature Communications, 2018, 9, 341.	12.8	297
3	Fluorescence/Bioluminescence Resonance Energy Transfer Techniques to Study G-Protein-Coupled Receptor Activation and Signaling. Pharmacological Reviews, 2012, 64, 299-336.	16.0	279
4	Fluorescent labeling of tetracysteine-tagged proteins in intact cells. Nature Protocols, 2010, 5, 1666-1677.	12.0	192
5	β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle. Nature, 2016, 531, 661-664.	27.8	190
6	Optical techniques to analyze real-time activation and signaling of G-protein-coupled receptors. Trends in Pharmacological Sciences, 2008, 29, 159-165.	8.7	119
7	The allosteric vestibule of a seven transmembrane helical receptor controls G-protein coupling. Nature Communications, 2012, 3, 1044.	12.8	117
8	Fluorescence Resonance Energy Transfer Analysis of α _{2a} -Adrenergic Receptor Activation Reveals Distinct Agonist-Specific Conformational Changes. Molecular Pharmacology, 2009, 75, 534-541.	2.3	103
9	Differential Signaling of the Endogenous Agonists at the β2-Adrenergic Receptor. Journal of Biological Chemistry, 2010, 285, 36188-36198.	3.4	101
10	FRET-based sensors for the human M1-, M3-, and M5-acetylcholine receptors. Bioorganic and Medicinal Chemistry, 2011, 19, 1048-1054.	3.0	79
11	Helix 8 is the essential structural motif of mechanosensitive GPCRs. Nature Communications, 2019, 10, 5784.	12.8	79
12	Minireview: GPCR and G Proteins: Drug Efficacy and Activation in Live Cells. Molecular Endocrinology, 2009, 23, 590-599.	3.7	73
13	Conformational changes in Gâ€proteinâ€coupled receptors—the quest for functionally selective conformations is open. British Journal of Pharmacology, 2008, 153, S358-66.	5.4	68
14	A Fluorescence Resonance Energy Transfer-based M2 Muscarinic Receptor Sensor Reveals Rapid Kinetics of Allosteric Modulation. Journal of Biological Chemistry, 2010, 285, 8793-8800.	3.4	66
15	Ligand Residence Time at G-protein–Coupled Receptors—Why We Should Take Our Time To Study It. Molecular Pharmacology, 2015, 88, 552-560.	2.3	66
16	Arrestin Interactions with G Protein-Coupled Receptors. Handbook of Experimental Pharmacology, 2014, 219, 15-56.	1.8	62
17	A Photoswitchable Dualsteric Ligand Controlling Receptor Efficacy. Angewandte Chemie - International Edition, 2017, 56, 7282-7287.	13.8	61
18	GPCR kinase knockout cells reveal the impact of individual GRKs on arrestin binding and GPCR regulation. Nature Communications, 2022, 13, 540.	12.8	54

CARSTEN HOFFMANN

#	Article	IF	CITATIONS
19	Intramolecular and Intermolecular FRET Sensors for GPCRs – Monitoring Conformational Changes and Beyond. Trends in Pharmacological Sciences, 2018, 39, 123-135.	8.7	53
20	A New Generation of FRET Sensors for Robust Measurement of Gαi1, Gαi2 and Gαi3 Activation Kinetics in Single Cells. PLoS ONE, 2016, 11, e0146789.	2.5	50
21	FZD ₅ is a Gα _q -coupled receptor that exhibits the functional hallmarks of prototypical GPCRs. Science Signaling, 2018, 11, .	3.6	46
22	Dynamic ligand binding dictates partial agonism at a G protein–coupled receptor. Nature Chemical Biology, 2014, 10, 18-20.	8.0	45
23	Advanced fluorescence microscopy reveals disruption of dynamic CXCR4 dimerization by subpocket-specific inverse agonists. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29144-29154.	7.1	42
24	Structural insight into small molecule action on Frizzleds. Nature Communications, 2020, 11, 414.	12.8	38
25	Differential Regulation of GPCRs—Are GRK Expression Levels the Key?. Frontiers in Cell and Developmental Biology, 2021, 9, 687489.	3.7	32
26	Comparison of the Activation Kinetics of the M ₃ Acetylcholine Receptor and a Constitutively Active Mutant Receptor in Living Cells. Molecular Pharmacology, 2012, 82, 236-245.	2.3	30
27	Context-Dependent Signaling of CXC Chemokine Receptor 4 and Atypical Chemokine Receptor 3. Molecular Pharmacology, 2019, 96, 778-793.	2.3	30
28	A Perspective on Studying G-Protein–Coupled Receptor Signaling with Resonance Energy Transfer Biosensors in Living Organisms. Molecular Pharmacology, 2015, 88, 589-595.	2.3	28
29	Contribution of Fluorophores to Protein Kinase C FRET Probe Performance. ChemBioChem, 2008, 9, 1379-1384.	2.6	26
30	Chemokine Receptor Crystal Structures: What Can Be Learned from Them?. Molecular Pharmacology, 2019, 96, 765-777.	2.3	25
31	Optical probes based on G proteinâ€coupled receptors – added work or added value?. British Journal of Pharmacology, 2016, 173, 255-266.	5.4	24
32	Functional and structural characterization of axonal opioid receptors as targets for analgesia. Molecular Pain, 2016, 12, 174480691662873.	2.1	22
33	Dishevelled-3 conformation dynamics analyzed by FRET-based biosensors reveals a key role of casein kinase 1. Nature Communications, 2019, 10, 1804.	12.8	20
34	To sense or not to sense—new insights from GPCR-based and arrestin-based biosensors. Current Opinion in Cell Biology, 2019, 57, 16-24.	5.4	19
35	FRET Studies of Quinolone-Based Bitopic Ligands and Their Structural Analogues at the Muscarinic M ₁ Receptor. ACS Chemical Biology, 2017, 12, 833-843.	3.4	17
36	A split luciferase-based probe for quantitative proximal determination of Gαq signalling in live cells. Scientific Reports, 2018, 8, 17179.	3.3	16

CARSTEN HOFFMANN

#	Article	IF	CITATIONS
37	Ligand-Specific Allosteric Coupling Controls G-Protein-Coupled Receptor Signaling. ACS Pharmacology and Translational Science, 2020, 3, 859-867.	4.9	15
38	Ein photoschaltbarer Ligand zur Regulierung der Rezeptoraktivierung. Angewandte Chemie, 2017, 129, 7388-7393.	2.0	14
39	Kinetic Analysis of the Early Signaling Steps of the Human Chemokine Receptor CXCR4. Molecular Pharmacology, 2020, 98, 72-87.	2.3	13
40	Structure-based exploration and pharmacological evaluation of N-substituted piperidin-4-yl-methanamine CXCR4 chemokine receptor antagonists. European Journal of Medicinal Chemistry, 2019, 162, 631-649.	5.5	12
41	Muscarinic receptors promote pacemaker fate at the expense of secondary conduction system tissue in zebrafish. JCI Insight, 2019, 4, .	5.0	9
42	Enhanced Fluorescence Resonance Energy Transfer in G-Protein-Coupled Receptor Probes on Nanocoated Microscopy Coverslips. ACS Photonics, 2018, 5, 2225-2233.	6.6	7
43	The Role of Orthosteric Building Blocks of Bitopic Ligands for Muscarinic M1 Receptors. ACS Omega, 2020, 5, 31706-31715.	3.5	6
44	Suitability of GRK Antibodies for Individual Detection and Quantification of GRK Isoforms in Western Blots. International Journal of Molecular Sciences, 2022, 23, 1195.	4.1	4
45	Modulation of CXCR4-Mediated Gi1 Activation by EGF Receptor and GRK2. ACS Pharmacology and Translational Science, 2020, 3, 627-634.	4.9	3
46	G Proteinâ€Coupled Receptor Activation: Amino Acid Movements Caught Infraâ€Redâ€Handed. ChemBioChem, 2010, 11, 2247-2249.	2.6	0
47	Phosphorylation of the D ₁ Dopamine Receptor by G Proteinâ€Coupled Receptor Kinases: phosphorylation site identification and linkage to functional effects. FASEB Journal, 2021, 35, .	0.5	0
48	G proteinâ€coupled receptor kinase 2 can enhance βâ€arrestin recruitment to the D ₂ dopamine receptor in the absence of receptor phosphorylation. FASEB Journal, 2021, 35, .	0.5	0
49	Direct Measurement Of Receptor/Gq Interaction. FASEB Journal, 2007, 21, A429.	0.5	0
50	Gq oupled Receptor signaling – A kinetic analysis in living cells. FASEB Journal, 2008, 22, 722.1.	0.5	0
51	Molecular determinants of the mechanosensitivity of G proteinâ€coupled receptors. FASEB Journal, 2020, 34, 1-1.	0.5	0
52	Using Intramolecular Fluorescence Resonance Energy Transfer to Study Receptor Conformation. , 0, , 133-146.		0