Alexandre Favereaux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7603416/publications.pdf

Version: 2024-02-01

		933447	1058476	
15	546	10	14	
papers	citations	h-index	g-index	
17	17	17	833	
all docs	docs citations	times ranked	citing authors	

#	Article	lF	Citations
1	MDGAs are fast-diffusing molecules that delay excitatory synapse development by altering neuroligin behavior. ELife, 2022, 11, .	6.0	9
2	Selection of Bis-Indolyl Pyridines and Triphenylamines as New Inhibitors of SARS-CoV-2 Cellular Entry by Modulating the Spike Protein/ACE2 Interfaces. Antimicrobial Agents and Chemotherapy, 2022, 66, .	3.2	9
3	In Silico, In Vitro and In Cellulo Models for Monitoring SARS-CoV-2 Spike/Human ACE2 Complex, Viral Entry and Cell Fusion. Viruses, 2021, 13, 365.	3.3	12
4	Emerging Roles of Extracellular Vesicles in the Central Nervous System: Physiology, Pathology, and Therapeutic Perspectives. Frontiers in Cellular Neuroscience, 2021, 15, 626043.	3.7	34
5	Acquisition of analgesic properties by the cholecystokinin (CCK)/CCK2 receptor system within the amygdala in a persistent inflammatory pain condition. Pain, 2019, 160, 345-357.	4.2	18
6	miRNA-Dependent Control of Homeostatic Plasticity in Neurons. Frontiers in Cellular Neuroscience, 2019, 13, 536.	3.7	21
7	APE1/Ref-1 redox function contributes to inflammatory pain sensitization. Experimental Neurology, 2018, 307, 1-11.	4.1	12
8	Oxaliplatin treatment impairs extension of sensory neuron neurites in vitro through miR-204 overexpression. NeuroToxicology, 2018, 68, 91-100.	3.0	10
9	Small RNA-Seq reveals novel miRNAs shaping the transcriptomic identity of rat brain structures. Life Science Alliance, 2018, 1, e201800018.	2.8	6
10	MicroRNA and chronic pain: From mechanisms to therapeutic potential., 2017, 180, 1-15.		94
11	Group I metabotropic glutamate receptor plasticity after peripheral inflammation alters nociceptive transmission in the dorsal horn of the spinal cord in adult rats. Molecular Pain, 2017, 13, 174480691773793.	2.1	14
12	Spinal miRNA-124 regulates synaptopodin and nociception in an animal model of bone cancer pain. Scientific Reports, 2017, 7, 10949.	3.3	36
13	MicroRNAs regulate neuronal plasticity and are involved in pain mechanisms. Frontiers in Cellular Neuroscience, 2014, 8, 31.	3.7	48
14	miR-92a regulates expression of synaptic GluA1-containing AMPA receptors during homeostatic scaling. Nature Neuroscience, 2014, 17, 1040-1042.	14.8	68
15	Bidirectional integrative regulation of Cav1.2 calcium channel by microRNA miR-103: role in pain. EMBO Journal, 2011, 30, 3830-3841.	7.8	153