Ana P Gomes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7603330/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Declining NAD+ Induces a Pseudohypoxic State Disrupting Nuclear-Mitochondrial Communication during Aging. Cell, 2013, 155, 1624-1638.	28.9	1,134
2	Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine biosynthesis in cancers. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1778-1783.	7.1	239
3	Unique Metabolic Adaptations Dictate Distal Organ-Specific Metastatic Colonization. Cancer Cell, 2018, 33, 347-354.	16.8	133
4	The Sirt1 activator SRT3025 provides atheroprotection in Apoeâ^'/â^' mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. European Heart Journal, 2015, 36, 51-59.	2.2	117
5	Age-induced accumulation of methylmalonic acid promotes tumour progression. Nature, 2020, 585, 283-287.	27.8	115
6	mTORC1 Promotes Metabolic Reprogramming by the Suppression of GSK3-Dependent Foxk1 Phosphorylation. Molecular Cell, 2018, 70, 949-960.e4.	9.7	107
7	Beyond the Warburg Effect: How Do Cancer Cells Regulate One-Carbon Metabolism?. Frontiers in Cell and Developmental Biology, 2018, 6, 90.	3.7	88
8	A nexus for cellular homeostasis: the interplay between metabolic and signal transduction pathways. Current Opinion in Biotechnology, 2015, 34, 110-117.	6.6	72
9	Dynamic Incorporation of Histone H3 Variants into Chromatin Is Essential for Acquisition of Aggressive Traits and Metastatic Colonization. Cancer Cell, 2019, 36, 402-417.e13.	16.8	69
10	Geroncogenesis: Metabolic Changes during Aging as a Driver of Tumorigenesis. Cancer Cell, 2014, 25, 12-19.	16.8	52
11	Skeletal muscle overexpression of nicotinamide phosphoribosyl transferase in mice coupled with voluntary exercise augments exercise endurance. Molecular Metabolism, 2018, 7, 1-11.	6.5	39
12	Altered propionate metabolism contributes to tumour progression and aggressiveness. Nature Metabolism, 2022, 4, 435-443.	11.9	33
13	NADK is activated by oncogenic signaling to sustain pancreatic ductal adenocarcinoma. Cell Reports, 2021, 35, 109238.	6.4	19
14	Adding Polyamine Metabolism to the mTORC1 Toolkit in Cell Growth and Cancer. Developmental Cell, 2017, 42, 112-114.	7.0	11
15	Metabolic reprogramming: a bridge between aging and tumorigenesis. Molecular Oncology, 2022, 16, 3295-3318.	4.6	8
16	Targeting the premetastatic niche: epigenetic therapies in the spotlight. Signal Transduction and Targeted Therapy, 2020, 5, 68.	17.1	7
17	Histone H3 variants at the root of metastasis. Molecular and Cellular Oncology, 2020, 7, 1684128.	0.7	3
18	Metabolic requirements of the metastatic cascade. Current Opinion in Systems Biology, 2021, 28, 100381.	2.6	3

#	Article	IF	CITATIONS
19	Measuring PGC-1α and Its Acetylation Status in Mouse Primary Myotubes. Methods in Molecular Biology, 2015, 1241, 49-57.	0.9	2
20	Age-induced metabolic reprogramming underlies cancer progression. Molecular and Cellular Oncology, 2021, 8, 1876506.	0.7	1