Kate Poole

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7602274/publications.pdf

Version: 2024-02-01

40 papers

2,341 citations

236925 25 h-index 315739 38 g-index

42 all docs 42 docs citations

42 times ranked 3309 citing authors

#	Article	IF	CITATIONS
1	From stretch to deflection: the importance of context in the activation of mammalian, mechanically activated ion channels. FEBS Journal, 2022, 289, 4447-4469.	4.7	19
2	The Diverse Physiological Functions of Mechanically Activated Ion Channels in Mammals. Annual Review of Physiology, 2022, 84, 307-329.	13.1	20
3	Testing 3D printed biological platform for advancing simulated microgravity and space mechanobiology research. Npj Microgravity, 2022, 8, .	3.7	5
4	A 3Dâ€Bioprinted Vascularized Glioblastomaâ€onâ€aâ€Chip for Studying the Impact of Simulated Microgravity as a Novel Preâ€Clinical Approach in Brain Tumor Therapy. Advanced Therapeutics, 2021, 4, 2100106.	3.2	20
5	Heterotypic tumor models through freeform printing into photostabilized granular microgels. Biomaterials Science, 2021, 9, 4496-4509.	5.4	23
6	Microgravity × Radiation: A Space Mechanobiology Approach Toward Cardiovascular Function and Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 750775.	3.7	7
7	Collagen Organization Within the Cartilage of Trpv4 â^'/â^' Mice Studied with Twoâ€Photon Microscopy and Polarized Second Harmonic Generation. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 504-514.	1.5	2
8	Modeling the Impact of Microgravity at the Cellular Level: Implications for Human Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 96.	3.7	69
9	TACAN Is an Ion Channel Involved in Sensing Mechanical Pain. Cell, 2020, 180, 956-967.e17.	28.9	120
10	Modulating the Mechanical Activation of TRPV4 at the Cell-Substrate Interface. Frontiers in Bioengineering and Biotechnology, 2020, 8, 608951.	4.1	19
11	TMEM87a/Elkin1, a component of a novel mechanoelectrical transduction pathway, modulates melanoma adhesion and migration. ELife, 2020, 9, .	6.0	43
12	PIEZO1-Mediated Currents Are Modulated by Substrate Mechanics. ACS Nano, 2019, 13, 13545-13559.	14.6	44
13	Analysis of Mechanically Activated Ion Channels at the Cell-Substrate Interface: Combining Pillar Arrays and Whole-Cell Patch-Clamp. Frontiers in Bioengineering and Biotechnology, 2019, 7, 47.	4.1	15
14	Mechanomics Approaches to Understand Cell Behavior in Context of Tissue Neogenesis, During Prenatal Development and Postnatal Healing. Frontiers in Cell and Developmental Biology, 2019, 7, 354.	3.7	6
15	Mapping the Mechanome–A Protocol for Simultaneous Live Imaging and Quantitative Analysis of Cell Mechanoadaptation and Ingression. Bio-protocol, 2019, 9, e3439.	0.4	2
16	Mechanically activated ion channels. International Journal of Biochemistry and Cell Biology, 2018, 97, 104-107.	2.8	48
17	Cellular Mechanotransduction via Ion Channels at the Cell-Substrate Interface. Biophysical Journal, 2018, 114, 19a.	0.5	0
18	Mechanoelectrical transduction in chondrocytes. Clinical and Experimental Pharmacology and Physiology, 2018, 45, 481-488.	1.9	41

#	Article	IF	CITATIONS
19	A 3D Magnetic Hyaluronic Acid Hydrogel for Magnetomechanical Neuromodulation of Primary Dorsal Root Ganglion Neurons. Advanced Materials, 2018, 30, e1800927.	21.0	78
20	Small-molecule inhibition of STOML3 oligomerization reverses pathological mechanical hypersensitivity. Nature Neuroscience, 2017, 20, 209-218.	14.8	59
21	Introducing Membrane Charge and Membrane Potential to T Cell Signaling. Frontiers in Immunology, 2017, 8, 1513.	4.8	106
22	Direct measurement of TRPV4 and PIEZO1 activity reveals multiple mechanotransduction pathways in chondrocytes. ELife, 2017, 6, .	6.0	190
23	Structural Decoding of the Netrin-1/UNC5 Interaction and its Therapeutical Implications in Cancers. Cancer Cell, 2016, 29, 173-185.	16.8	80
24	Sensory mechanotransduction at membrane-matrix interfaces. Pflugers Archiv European Journal of Physiology, 2015, 467, 121-132.	2.8	36
25	Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch. Nature Communications, 2014, 5, 3520.	12.8	229
26	A stomatin dimer modulates the activity of acid-sensing ion channels. EMBO Journal, 2012, 31, 3635-3646.	7.8	72
27	Regulation of ASIC channels by a stomatin/STOML3 complex located in a mobile vesicle pool in sensory neurons. Open Biology, 2012, 2, 120096.	3.6	38
28	Rapid Method for Proline Determination in Grape Juice and Wine. Journal of Agricultural and Food Chemistry, 2012, 60, 4259-4264.	5.2	36
29	Stomatin-domain proteins. European Journal of Cell Biology, 2012, 91, 240-245.	3.6	100
30	The Molecular and Cellular Identity of Peripheral Osmoreceptors. Neuron, 2011, 69, 332-344.	8.1	141
31	Laminin-332 coordinates mechanotransduction and growth cone bifurcation in sensory neurons. Nature Neuroscience, 2011, 14, 993-1000.	14.8	66
32	Proline transport and stress tolerance of ammonia-insensitive mutants of the PUT4-encoded proline-specific permease in yeast. Journal of General and Applied Microbiology, 2009, 55, 427-439.	0.7	16
33	Probing cellular microenvironments and tissue remodeling by atomic force microscopy. Pflugers Archiv European Journal of Physiology, 2008, 456, 29-49.	2.8	80
34	Confocal and Atomic Force Microscopy. Imaging & Microscopy, 2008, 10, 56-57.	0.1	0
35	A new technical approach to quantify cell–cell adhesion forces by AFM. Ultramicroscopy, 2006, 106, 637-644.	1.9	225
36	Flexible, actin-based ridges colocalise with the \hat{l}^21 integrin on the surface of melanoma cells. British Journal of Cancer, 2005, 92, 1499-1505.	6.4	28

KATE POOLE

#	Article	IF	CITATION
37	Molecular-scale Topographic Cues Induce the Orientation and Directional Movement of Fibroblasts on Two-dimensional Collagen Surfaces. Journal of Molecular Biology, 2005, 349, 380-386.	4.2	118
38	Creating nanoscopic collagen matrices using atomic force microscopy. Microscopy Research and Technique, 2004, 64, 435-440.	2.2	43
39	The effect of raft lipid depletion on microvilli formation in MDCK cells, visualized by atomic force microscopy. FEBS Letters, 2004, 565, 53-58.	2.8	75
40	Practical significance of relative assimilable nitrogen requirements of yeast: a preliminary study of fermentation performance and liberation of H ₂ S. Australian Journal of Grape and Wine Research, 2002, 8, 175-179.	2.1	22