Paul B Rainey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7602263/publications.pdf

Version: 2024-02-01

		17776	19470
147	17,026	65	122
papers	citations	h-index	g-index
172	172	172	16193
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Transposable elements promote the evolution of genome streamlining. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200477.	1.8	14
2	<i>In vivo</i> transcriptome analysis provides insights into host-dependent expression of virulence factors by <i>Yersinia entomophaga</i> MH96, during infection of <i>Galleria mellonella</i> G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	6
3	Metaâ€population structure and the evolutionary transition to multicellularity. Ecology Letters, 2020, 23, 1380-1390.	3.0	21
4	Genotypic and phenotypic analyses reveal distinct population structures and ecotypes for sugar beetâ€associated ⟨i⟩Pseudomonas⟨ i⟩ in Oxford and Auckland. Ecology and Evolution, 2020, 10, 5963-5975.	0.8	2
5	Ecological scaffolding and the evolution of individuality. Nature Ecology and Evolution, 2020, 4, 426-436.	3.4	69
6	Toward a dynamical understanding of microbial communities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190248.	1.8	21
7	Experimental manipulation of selfish genetic elements links genes to microbial community function. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190681.	1.8	18
8	Eco-evolutionary dynamics of nested Darwinian populations and the emergence of community-level heredity. ELife, 2020, 9, .	2.8	46
9	Causes and Biophysical Consequences of Cellulose Production by Pseudomonas fluorescens SBW25 at the Air-Liquid Interface. Journal of Bacteriology, 2019, 201, .	1.0	11
10	Repeated Phenotypic Evolution by Different Genetic Routes in Pseudomonas fluorescens SBW25. Molecular Biology and Evolution, 2019, 36, 1071-1085.	3.5	18
11	Ribosome Provisioning Activates a Bistable Switch Coupled to Fast Exit from Stationary Phase. Molecular Biology and Evolution, 2019, 36, 1056-1070.	3.5	22
12	Predicting mutational routes to new adaptive phenotypes. ELife, 2019, 8, .	2.8	55
13	The ecological genetics of <i>Pseudomonas syringae</i> from kiwifruit leaves. Environmental Microbiology, 2018, 20, 2066-2084.	1.8	22
14	Evolution of copper resistance in the kiwifruit pathogen <i><scp>P</scp>seudomonas syringae</i> pv. <i>actinidiae</i> through acquisition of integrative conjugative elements and plasmids. Environmental Microbiology, 2017, 19, 819-832.	1.8	106
15	Evolutionary convergence in experimental <i>Pseudomonas</i> populations. ISME Journal, 2017, 11, 589-600.	4.4	45
16	Unravelling the complexity and redundancy of carbon catabolic repression in <i>Pseudomonas fluorescens</i> SBW25. Molecular Microbiology, 2017, 105, 589-605.	1.2	19
17	Origin and Evolution of the Kiwifruit Canker Pandemic. Genome Biology and Evolution, 2017, 9, 932-944.	1.1	106
18	Darwin was right: where now for experimental evolution?. Current Opinion in Genetics and Development, 2017, 47, 102-109.	1.5	44

#	Article	IF	Citations
19	Adaptive evolution by spontaneous domain fusion and protein relocalization. Nature Ecology and Evolution, 2017, 1, 1562-1568.	3.4	25
20	Identification and Characterization of Domesticated Bacterial Transposases. Genome Biology and Evolution, 2017, 9, 2110-2121.	1.1	13
21	Anaerobically Grown Escherichia coli Has an Enhanced Mutation Rate and Distinct Mutational Spectra. PLoS Genetics, 2017, 13, e1006570.	1.5	60
22	Fragmentation modes and the evolution of life cycles. PLoS Computational Biology, 2017, 13, e1005860.	1.5	41
23	Lineage Tracking for Probing Heritable Phenotypes at Single-Cell Resolution. PLoS ONE, 2016, 11, e0152395.	1.1	29
24	Challenges in microbial ecology: building predictive understanding of community function and dynamics. ISME Journal, 2016, 10, 2557-2568.	4.4	570
25	Modes of migration and multilevel selection in evolutionary multiplayer games. Journal of Theoretical Biology, 2015, 387, 144-153.	0.8	11
26	Molecular mechanisms of xylose utilization by <scp><i>P</i></scp> <i>seudomonas fluorescens</i> : overlapping genetic responses to xylose, xylulose, ribose and mannitol. Molecular Microbiology, 2015, 98, 553-570.	1.2	26
27	Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium. Frontiers in Microbiology, 2015, 6, 1036.	1.5	144
28	Precarious development: The uncertain social life of cellular slime molds. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2639-2640.	3.3	6
29	Role of the Transporter-Like Sensor Kinase CbrA in Histidine Uptake and Signal Transduction. Journal of Bacteriology, 2015, 197, 2867-2878.	1.0	22
30	Bistability in a Metabolic Network Underpins the De Novo Evolution of Colony Switching in Pseudomonas fluorescens. PLoS Biology, 2015, 13, e1002109.	2.6	78
31	Experimental evolution reveals hidden diversity in evolutionary pathways. ELife, 2015, 4, .	2.8	104
32	The Genetic Structure of Staphylococcus aureus Populations from the Southwest Pacific. PLoS ONE, 2014, 9, e100300.	1.1	21
33	Microbes are not bound by sociobiology: Response to Kümmerli and Rossâ€Gillespie (2013). Evolution; International Journal of Organic Evolution, 2014, 68, 3344-3355.	1.1	22
34	Resolving Conflicts During the Evolutionary Transition to Multicellular Life. Annual Review of Ecology, Evolution, and Systematics, 2014, 45, 599-620.	3.8	47
35	Automated Reconstruction of Whole-Genome Phylogenies from Short-Sequence Reads. Molecular Biology and Evolution, 2014, 31, 1077-1088.	3.5	399
36	Urocanate as a potential signaling molecule for bacterial recognition of eukaryotic hosts. Cellular and Molecular Life Sciences, 2014, 71, 541-547.	2.4	12

#	Article	IF	CITATIONS
37	The biosurfactant viscosin produced by <scp><i>P</i></scp> <i>seudomonas fluorescens</i> èâ€ <scp>SBW</scp> 25 aids spreading motility and plant growth promotion. Environmental Microbiology, 2014, 16, 2267-2281.	1.8	103
38	Life cycles, fitness decoupling and the evolution of multicellularity. Nature, 2014, 515, 75-79.	13.7	176
39	Mini-Tn7 vectors for studying post-transcriptional gene expression in Pseudomonas. Journal of Microbiological Methods, 2014, 107, 182-185.	0.7	15
40	The Upper Respiratory Tract as a Microbial Source for Pulmonary Infections in Cystic Fibrosis. Parallels from Island Biogeography. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1309-1315.	2.5	100
41	Nascent multicellular life and the emergence of individuality. Journal of Biosciences, 2014, 39, 237-48.	0.5	32
42	Founder niche constrains evolutionary adaptive radiation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20663-20668.	3.3	29
43	Cystic Fibrosis Therapy: A Community Ecology Perspective. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 150-156.	1.4	94
44	EXPLORING THE SOCIOBIOLOGY OF PYOVERDIN-PRODUCING <i>PSEUDOMONAS</i> International Journal of Organic Evolution, 2013, 67, 3161-3174.	1.1	80
45	A conceptual framework for the evolutionary origins of multicellularity. Physical Biology, 2013, 10, 035001.	0.8	62
46	Adaptive Divergence in Experimental Populations of <i>Pseudomonas fluorescens</i> . V. Insight into the Niche Specialist Fuzzy Spreader Compels Revision of the Model <i>Pseudomonas</i> Radiation. Genetics, 2013, 195, 1319-1335.	1.2	48
47	Genomic Analysis of the Kiwifruit Pathogen Pseudomonas syringae pv. actinidiae Provides Insight into the Origins of an Emergent Plant Disease. PLoS Pathogens, 2013, 9, e1003503.	2.1	247
48	Competition both drives and impedes diversification in a model adaptive radiation. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131253.	1.2	52
49	Eco-Evolutionary Feedback and the Tuning of Proto-Developmental Life Cycles. PLoS ONE, 2013, 8, e82274.	1.1	20
50	Spatial distribution of microbial communities in the cystic fibrosis lung. ISME Journal, 2012, 6, 471-474.	4.4	156
51	Genome Sequence of the Biocontrol Strain Pseudomonas fluorescens F113. Journal of Bacteriology, 2012, 194, 1273-1274.	1.0	69
52	Case Studies of the Spatial Heterogeneity of DNA Viruses in the Cystic Fibrosis Lung. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 127-131.	1.4	102
53	Pseudomonas aeruginosa Exhibits Frequent Recombination, but Only a Limited Association between Genotype and Ecological Setting. PLoS ONE, 2012, 7, e44199.	1.1	114
54	The origin and ecological significance of multiple branches for histidine utilization in <i>Pseudomonas aeruginosa</i> PAO1. Environmental Microbiology, 2012, 14, 1929-1940.	1.8	6

#	Article	IF	CITATIONS
55	Variation in transport explains polymorphism of histidine and urocanate utilization in a natural <i>Pseudomonas</i> population. Environmental Microbiology, 2012, 14, 1941-1951.	1.8	11
56	The evolutionary emergence of stochastic phenotype switching in bacteria. Microbial Cell Factories, 2011, 10, S14.	1.9	60
57	Curiosities of REPINs and RAYTs. Mobile Genetic Elements, 2011, 1, 262-301.	1.8	20
58	Exclusion rules, bottlenecks and the evolution of stochastic phenotype switching. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3574-3583.	1.2	52
59	The distribution of fitness effects of new beneficial mutations in <i>Pseudomonas fluorescens</i> Biology Letters, 2011, 7, 98-100.	1.0	48
60	Comparison of Three Molecular Techniques for Typing <i>Pseudomonas aeruginosa</i> Isolates in Sputum Samples from Patients with Cystic Fibrosis. Journal of Clinical Microbiology, 2011, 49, 263-268.	1.8	78
61	Within-Genome Evolution of REPINs: a New Family of Miniature Mobile DNA in Bacteria. PLoS Genetics, 2011, 7, e1002132.	1.5	45
62	TUNING A GENETIC SWITCH: EXPERIMENTAL EVOLUTION AND NATURAL VARIATION OF PROPHAGE INDUCTION. Evolution; International Journal of Organic Evolution, 2010, 64, 1086-1097.	1.1	40
63	Cheats as first propagules: A new hypothesis for the evolution of individuality during the transition from single cells to multicellularity. BioEssays, 2010, 32, 872-880.	1.2	94
64	CbrABâ€dependent regulation of <i>pcnB</i> , a poly(A) polymerase gene involved in polyadenylation of RNA in <i>Pseudomonas fluorescens</i> . Environmental Microbiology, 2010, 12, 1674-1683.	1.8	12
65	Bet hedging in the underworld. Genome Biology, 2010, 11, 137.	13.9	16
66	Adaptive Divergence in Experimental Populations of (i) Pseudomonas fluorescens (i). IV. Genetic Constraints Guide Evolutionary Trajectories in a Parallel Adaptive Radiation. Genetics, 2009, 183, 1041-1053.	1.2	137
67	Experimental evolution of bet hedging. Nature, 2009, 462, 90-93.	13.7	571
68	Arrhythmia of tempo and mode. Nature, 2009, 461, 1219-1221.	13.7	4
69	Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biology, 2009, 10, R51.	13.9	370
70	Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25. Molecular Microbiology, 2008, 41, 999-1014.	1.2	190
71	Regulation of copper homeostasis in <i>Pseudomonas fluorescens</i> SBW25. Environmental Microbiology, 2008, 10, 3284-3294.	1.8	59
72	Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25. BMC Microbiology, 2008, 8, 7.	1.3	67

#	Article	IF	CITATIONS
73	Dual Involvement of CbrAB and NtrBC in the Regulation of Histidine Utilization in <i>Pseudomonas fluorescens</i> SBW25. Genetics, 2008, 178, 185-195.	1.2	81
74	Mutational activation of niche-specific genes provides insight into regulatory networks and bacterial function in a complex environment. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18247-18252.	3.3	79
75	Adaptive Divergence in Experimental Populations of Pseudomonas fluorescens. III. Mutational Origins of Wrinkly Spreader Diversity. Genetics, 2007, 176, 441-453.	1.2	150
76	Genetic Analysis of the Histidine Utilization (<i>hut</i>) Genes in <i>Pseudomonas fluorescens</i> SBW25. Genetics, 2007, 176, 2165-2176.	1.2	62
77	The Role of a P1-Type ATPase from Pseudomonas fluorescens SBW25 in Copper Homeostasis and Plant Colonization. Molecular Plant-Microbe Interactions, 2007, 20, 581-588.	1.4	27
78	Construction and validation of a neutrally-marked strain of Pseudomonas fluorescens SBW25. Journal of Microbiological Methods, 2007, 71, 78-81.	0.7	61
79	Sequence-based analysis of pQBR103; a representative of a unique, transfer-proficient mega plasmid resident in the microbial community of sugar beet. ISME Journal, 2007, 1, 331-340.	4.4	50
80	Unity from conflict. Nature, 2007, 446, 616-616.	13.7	40
81	Evolution of species interactions in a biofilm community. Nature, 2007, 445, 533-536.	13.7	460
82	Immigration history controls diversification in experimental adaptive radiation. Nature, 2007, 446, 436-439.	13.7	218
83	Experimental adaptation to high and low quality environments under different scales of temporal variation. Journal of Evolutionary Biology, 2007, 20, 296-300.	0.8	57
84	Genetic characterization of psp encoding the DING protein in Pseudomonas fluorescens SBW25. BMC Microbiology, 2007, 7, 114.	1.3	17
85	The impact of phages on interspecific competition in experimental populations of bacteria. BMC Ecology, 2006, 6, 19.	3.0	48
86	Spatial heterogeneity and the stability of host-parasite coexistence. Journal of Evolutionary Biology, 2006, 19, 374-379.	0.8	90
87	Unraveling adaptive evolution: how a single point mutation affects the protein coregulation network. Nature Genetics, 2006, 38, 1015-1022.	9.4	68
88	The histidine utilization (hut) genes of Pseudomonas fluorescens SBW25 are active on plant surfaces, but are not required for competitive colonization of sugar beet seedlings. Microbiology (United) Tj ETQq0 0 0 rg	şBT ¢O verlo	ock4110 Tf 50 1
89	Adaptive Divergence in Experimental Populations of Pseudomonas fluorescens. II. Role of the GGDEF Regulator WspR in Evolution and Development of the Wrinkly Spreader Phenotype. Genetics, 2006, 173, 515-526.	1.2	104
90	The use of model <i>Pseudomonas fluorescens</i> populations to study the causes and consequences of microbial diversity., 2005,, 83-99.		0

#	Article	IF	CITATIONS
91	Genetic Characterization of Pseudomonas fluorescens SBW25 rsp Gene Expression in the Phytosphere and In Vitro. Journal of Bacteriology, 2005, 187, 8477-8488.	1.0	48
92	The Pseudomonas fluorescens SBW25 wrinkly spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity. Microbiology (United Kingdom), 2005, 151, 2829-2839.	0.7	130
93	The effect of a bacteriophage on diversification of the opportunistic bacterial pathogen, Pseudomonas aeruginosa. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1385-1391.	1.2	129
94	The PIN-domain toxin–antitoxin array in mycobacteria. Trends in Microbiology, 2005, 13, 360-365.	3. 5	111
95	Unraveling the Secret Lives of Bacteria: Use of In Vivo Expression Technology and Differential Fluorescence Induction Promoter Traps as Tools for Exploring Niche-Specific Gene Expression. Microbiology and Molecular Biology Reviews, 2005, 69, 217-261.	2.9	138
96	Functional and phylogenetic analysis of a plant-inducible oligoribonuclease (orn) gene from an indigenous Pseudomonas plasmid. Microbiology (United Kingdom), 2004, 150, 2889-2898.	0.7	16
97	The evolution of a pleiotropic fitness tradeoff in Pseudomonas fluorescens. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8072-8077.	3.3	156
98	IVET experiments in Pseudomonas fluorescens reveal cryptic promoters at loci associated with recognizable overlapping genes. Microbiology (United Kingdom), 2004, 150, 518-520.	0.7	30
99	From The Cover: Global analysis of predicted proteomes: Functional adaptation of physical properties. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8390-8395.	3.3	63
100	Ecological constraints on diversification in a model adaptive radiation. Nature, 2004, 431, 984-988.	13.7	97
101	The indigenous Pseudomonas plasmid pQBR103 encodes plant-inducible genes, including three putative helicases. FEMS Microbiology Ecology, 2004, 51, 9-17.	1.3	26
102	The Ecology and Genetics of Microbial Diversity. Annual Review of Microbiology, 2004, 58, 207-231.	2.9	178
103	Evolution of bacterial diversity and the origins of modularity. Research in Microbiology, 2004, 155, 370-375.	1.0	27
104	Big questions, small worlds: microbial model systems in ecology. Trends in Ecology and Evolution, 2004, 19, 189-197.	4.2	387
105	The effect of spatial heterogeneity and parasites on the evolution of host diversity. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 107-111.	1.2	105
106	Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Molecular Microbiology, 2003, 50, 15-27.	1.2	393
107	Genes encoding a cellulosic polymer contribute toward the ecological success of Pseudomonas fluorescens SBW25 on plant surfaces. Molecular Ecology, 2003, 12, 3109-3121.	2.0	144
108	Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus. Molecular Microbiology, 2003, 47, 1695-1708.	1.2	255

#	Article	IF	Citations
109	Population mixing accelerates coevolution. Ecology Letters, 2003, 6, 975-979.	3.0	127
110	Evolution of cooperation and conflict in experimental bacterial populations. Nature, 2003, 425, 72-74.	13.7	502
111	Development and Application of a dapB -Based In Vivo Expression Technology System To Study Colonization of Rice by the Endophytic Nitrogen-Fixing Bacterium Pseudomonas stutzeri A15. Applied and Environmental Microbiology, 2003, 69, 6864-6874.	1.4	92
112	Mechanisms linking diversity, productivity and invasibility in experimental bacterial communities. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 2277-2283.	1.2	112
113	Antagonistic coevolution between a bacterium and a bacteriophage. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 931-936.	1.2	545
114	Autolysis and Autoaggregation in Pseudomonas aeruginosa Colony Morphology Mutants. Journal of Bacteriology, 2002, 184, 6481-6489.	1.0	380
115	The role of parasites in sympatric and allopatric host diversification. Nature, 2002, 420, 496-499.	13.7	257
116	Adaptive Divergence in Experimental Populations of <i>Pseudomonas fluorescens </i> . I. Genetic and Phenotypic Bases of Wrinkly Spreader Fitness. Genetics, 2002, 161, 33-46.	1.2	257
117	Notes on designing a partial genomic database: The PfSBW25 Encyclopaedia, a sequence database for Pseudomonas fluorescens SBW25. Microbiology (United Kingdom), 2001, 147, 247-249.	0.7	8
118	In vivo expression technology strategies: valuable tools for biotechnology. Current Opinion in Biotechnology, 2000, 11, 440-444.	3.3	59
119	Diversity peaks at intermediate productivity in a laboratory microcosm. Nature, 2000, 406, 508-512.	13.7	308
120	Disturbance and diversity in experimental microcosms. Nature, 2000, 408, 961-964.	13.7	276
121	Studies of Adaptive Radiation Using Model Microbial Systems. American Naturalist, 2000, 156, S35-S44.	1.0	83
122	The emergence and maintenance of diversity: insights from experimental bacterial populations. Trends in Ecology and Evolution, 2000, 15, 243-247.	4.2	171
123	The causes of Pseudomonas diversity. Microbiology (United Kingdom), 2000, 146, 2345-2350.	0.7	276
124	Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environmental Microbiology, 1999, 1, 243-257.	1.8	354
125	Environmentally constrained mutation and adaptive evolution in Salmonella. Current Biology, 1999, 9, 1477-1481.	1.8	20
126	Evolutionary genetics: The economics of mutation. Current Biology, 1999, 9, R371-R373.	1.8	20

#	Article	IF	Citations
127	Adaptive radiation in a heterogeneous environment. Nature, 1998, 394, 69-72.	13.7	1,099
128	Bacterial genomics and adaptation to life on plants: implications for the evolution of pathogenicity and symbiosis. Current Opinion in Microbiology, 1998, 1, 589-597.	2.3	65
129	Detecting Linkage Disequilibrium in Bacterial Populations. Genetics, 1998, 150, 1341-1348.	1.2	120
130	Does variation of sex ratio enhance reproductive success of offspring in tawny owls (Strix aluco). Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1111-1116.	1.2	116
131	Genetic and ecotypic structure of a fluorescent <i>Pseudomonas</i> population. Molecular Ecology, 1996, 5, 747-761.	2.0	47
132	Physical and genetic map of the Pseudomonas fluorescens SBW25 chromosome. Molecular Microbiology, 1996, 19, 521-533.	1.2	205
133	Site directed chromosomal marking of a fluorescent pseudomonad isolated from the phytosphere of sugar beet; stability and potential for marker gene transfer Molecular Ecology, 1995, 4, 755-764.	2.0	127
134	Comparison ofBorreliaisolated from UK foci of Lyme disease. FEMS Microbiology Letters, 1995, 130, 151-157.	0.7	8
135	Short-term community dynamics in the phyllosphere microbiology of field-grown sugar beet. FEMS Microbiology Ecology, 1995, 16, 205-212.	1.3	30
136	Adaptive evolution of highly mutable loci in pathogenic bacteria. Current Biology, 1994, 4, 24-33.	1.8	719
137	Quantitative and qualitative seasonal changes in the microbial community from the phyllosphere of sugar beet (Beta vulgaris). Plant and Soil, 1993, 150, 177-191.	1.8	191
138	Identification of a gene cluster encoding three high-molecular-weight proteins, which is required for synthesis of tolaasin by the mushroom pathogen Pseudomonas tolaasii. Molecular Microbiology, 1993, 8, 643-652.	1.2	58
139	Intraclonal Polymorphism in Bacteria. Advances in Microbial Ecology, 1993, , 263-300.	0.1	33
140	Effect of Pseudomonas putida on hyphal growth of Agaricus bisporus. Mycological Research, 1991, 95, 699-704.	2.5	62
141	Biological properties and spectrum of activity of tolaasin, a lipodepsipeptide toxin produced by the mushroom pathogen Pseudomonas tolaasii. Physiological and Molecular Plant Pathology, 1991, 39, 57-70.	1.3	122
142	Structure determination of tolaasin, an extracellular lipodepsipeptide produced by the mushroom pathogen, Pseudomonas tolaasii Paine. Journal of the American Chemical Society, 1991, 113, 2621-2627.	6.6	164
143	Determination of the structure of an extracellular peptide produced by the mushroom saprotroph pseudomonas reactans. Tetrahedron, 1991, 47, 3645-3654.	1.0	78
144	<i>Research Notes</i> Bacterial Blotch Disease of the Cultivated Mushroom Is Caused by an Ion Channel Forming Lipodepsipeptide Toxin. Molecular Plant-Microbe Interactions, 1991, 4, 407.	1.4	96

#	Article	IF	CITATIONS
145	A model system for examining involvement of bacteria in basidiome initiation of Agaricus bisporus. Mycological Research, 1990, 94, 191-195.	2.5	51
146	The genetics of phenotypic innovation. , 0, , 91-104.		4
147	Profile: The de novo evolution of cooperation: an unlikely event. , 0, , 357-359.		O