Christine Anne Beveridge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7601665/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sucrose promotes D53 accumulation and tillering in rice. New Phytologist, 2022, 234, 122-136.	7.3	45
2	Plasticity of bud outgrowth varies at cauline and rosette nodes in <i>Arabidopsis thaliana</i> . Plant Physiology, 2022, 188, 1586-1603.	4.8	7
3	Investigations into the emergent properties of gene-to-phenotype networks across cycles of selection: a case study of shoot branching in plants. In Silico Plants, 2022, 4, .	1.9	6
4	Ancestral sequence reconstruction of the <scp>CYP711</scp> family reveals functional divergence in strigolactone biosynthetic enzymes associated with gene duplication events in monocot grasses. New Phytologist, 2022, 235, 1900-1912.	7.3	9
5	Regulation of shoot branching in arabidopsis by trehalose 6â€phosphate. New Phytologist, 2021, 229, 2135-2151.	7.3	95
6	HEXOKINASE1 signalling promotes shoot branching and interacts with cytokinin and strigolactone pathways. New Phytologist, 2021, 231, 1088-1104.	7.3	53
7	Integration of the SMXL/D53 strigolactone signalling repressors in the model of shoot branching regulation in <i>Pisum sativum</i> . Plant Journal, 2021, 107, 1756-1770.	5.7	25
8	Sucrose promotes stem branching through cytokinin. Plant Physiology, 2021, 185, 1708-1721.	4.8	54
9	Adaptive divergence in shoot gravitropism creates hybrid sterility in an Australian wildflower. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
10	Sugar availability suppresses the auxinâ€induced strigolactone pathway to promote bud outgrowth. New Phytologist, 2020, 225, 866-879.	7.3	93
11	A Rapid Method for Quantifying RNA and Phytohormones From a Small Amount of Plant Tissue. Frontiers in Plant Science, 2020, 11, 605069.	3.6	15
12	Rational Design of Novel Fluorescent Enzyme Biosensors for Direct Detection of Strigolactones. ACS Synthetic Biology, 2020, 9, 2107-2118.	3.8	20
13	Hydroxyl carlactone derivatives are predominant strigolactones in <i>Arabidopsis</i> . Plant Direct, 2020, 4, e00219.	1.9	60
14	Translation of Strigolactones from Plant Hormone to Agriculture: Achievements, Future Perspectives, and Challenges. Trends in Plant Science, 2020, 25, 1087-1106.	8.8	62
15	De novo transcriptome assembly and annotation for gene discovery in avocado, macadamia and mango. Scientific Data, 2020, 7, 9.	5.3	22
16	Scion control of miRNA abundance and tree maturity in grafted avocado. BMC Plant Biology, 2019, 19, 382.	3.6	20
17	Juvenility and Vegetative Phase Transition in Tropical/Subtropical Tree Crops. Frontiers in Plant Science, 2019, 10, 729.	3.6	38
18	A phenol/chloroform-free method to extract nucleic acids from recalcitrant, woody tropical species for gene expression and sequencing. Plant Methods, 2019, 15, 62	4.3	67

Christine Anne Beveridge

#	Article	IF	CITATIONS
19	An Update on the Signals Controlling Shoot Branching. Trends in Plant Science, 2019, 24, 220-236.	8.8	219
20	Initial Bud Outgrowth Occurs Independent of Auxin Flow from Out of Buds. Plant Physiology, 2019, 179, 55-65.	4.8	56
21	The ability of plants to produce strigolactones affects rhizosphere community composition of fungi but not bacteria. Rhizosphere, 2019, 9, 18-26.	3.0	59
22	Strigolactones positively regulate chilling tolerance in pea and in <scp><i>Arabidopsis</i></scp> . Plant, Cell and Environment, 2018, 41, 1298-1310.	5.7	69
23	MicroRNA control of flowering and annual crop cycle in tropical/subtropical horticultural trees. Acta Horticulturae, 2018, , 681-686.	0.2	3
24	De novo transcriptome assembly reveals high transcriptional complexity in Pisum sativum axillary buds and shows rapid changes in expression of diurnally regulated genes. BMC Genomics, 2017, 18, 221.	2.8	24
25	IPA1: a direct target of SL signaling. Cell Research, 2017, 27, 1191-1192.	12.0	14
26	Apical dominance. Current Biology, 2017, 27, R864-R865.	3.9	69
27	Trehalose 6â€phosphate is involved in triggering axillary bud outgrowth in garden pea (<i>Pisum) Tj ETQq1 1 0.:</i>	784314 rg	BT /Qyerloc <mark>k</mark>
28	<i>LATERAL BRANCHING OXIDOREDUCTASE</i> acts in the final stages of strigolactone biosynthesis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6301-6306.	7.1	219
29	Phloem Transport of the Receptor DWARF14 Protein Is Required for Full Function of Strigolactones. Plant Physiology, 2016, 172, 1844-1852.	4.8	32
30	Ready, steady, go! A sugar hit starts the race to shoot branching. Current Opinion in Plant Biology, 2015, 25, 39-45.	7.1	136
31	Strigolactone Inhibition of Branching Independent of Polar Auxin Transport. Plant Physiology, 2015, 168, 1820-1829.	4.8	95
32	Conditional Auxin Response and Differential Cytokinin Profiles in Shoot Branching Mutants Â. Plant Physiology, 2014, 165, 1723-1736.	4.8	46
33	Strigolactones. Current Biology, 2014, 24, R987-R988.	3.9	3
34	Sugar demand, not auxin, is the initial regulator of apical dominance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6092-6097.	7.1	440
35	Diverse Roles of Strigolactones in Plant Development. Molecular Plant, 2013, 6, 18-28.	8.3	323
36	Dynamics of Strigolactone Function and Shoot Branching Responses in Pisum sativum. Molecular Plant, 2013, 6, 128-140.	8.3	88

#	Article	IF	CITATIONS
37	Strigolactones Stimulate Internode Elongation Independently of Gibberellins Â. Plant Physiology, 2013, 163, 1012-1025.	4.8	157
38	Strigolactones and the Coordinated Development of Shoot and Root. Signaling and Communication in Plants, 2013, , 189-204.	0.7	15
39	The Arabidopsis Ortholog of Rice DWARF27 Acts Upstream of MAX1 in the Control of Plant Development by Strigolactones Â. Plant Physiology, 2012, 159, 1073-1085.	4.8	179
40	Inhibition of strigolactones promotes adventitious root formation. Plant Signaling and Behavior, 2012, 7, 694-697.	2.4	29
41	Strigolactones Are Involved in Root Response to Low Phosphate Conditions in Arabidopsis Â. Plant Physiology, 2012, 160, 1329-1341.	4.8	191
42	Correction for Agusti et al., Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14277-14277.	7.1	3
43	Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea Â. Plant Physiology, 2012, 158, 1976-1987.	4.8	286
44	Models of longâ€distance transport: how is carrierâ€dependent auxin transport regulated in the stem?. New Phytologist, 2012, 194, 704-715.	7.3	53
45	Antagonistic Action of Strigolactone and Cytokinin in Bud Outgrowth Control Â. Plant Physiology, 2012, 158, 487-498.	4.8	366
46	F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8897-8902.	7.1	394
47	Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20242-20247.	7.1	348
48	Axillary bud outgrowth in herbaceous shoots: how do strigolactones fit into the picture?. Plant Molecular Biology, 2010, 73, 27-36.	3.9	56
49	New genes in the strigolactone-related shoot branching pathway. Current Opinion in Plant Biology, 2010, 13, 34-39.	7.1	208
50	Pea Has Its Tendrils in Branching Discoveries Spanning a Century from Auxin to Strigolactones. Plant Physiology, 2009, 151, 985-990.	4.8	62
51	Roles for Auxin, Cytokinin, and Strigolactone in Regulating Shoot Branching Â. Plant Physiology, 2009, 149, 1929-1944.	4.8	280
52	Computational Modeling and Molecular Physiology Experiments Reveal New Insights into Shoot Branching in Pea Â. Plant Cell, 2009, 21, 3459-3472.	6.6	61
53	Strigolactone Acts Downstream of Auxin to Regulate Bud Outgrowth in Pea and Arabidopsis Â. Plant Physiology, 2009, 150, 482-493.	4.8	338
54	Computational analysis of flowering in pea (<i>Pisum sativum</i>). New Phytologist, 2009, 184, 153-167.	7.3	16

CHRISTINE ANNE BEVERIDGE

#	Article	IF	CITATIONS
55	Molecular dissection of the pea shoot apical meristem*. Journal of Experimental Botany, 2009, 60, 4201-4213.	4.8	13
56	Strigolactones: discovery of the elusive shoot branching hormone. Trends in Plant Science, 2009, 14, 364-372.	8.8	230
57	Interactions between Auxin and Strigolactone in Shoot Branching Control. Plant Physiology, 2009, 151, 400-412.	4.8	358
58	Where to from here? The mechanisms enabling the movement of first instar caterpillars on whole plants using Helicoverpa armigera (Hübner). Arthropod-Plant Interactions, 2008, 2, 197-207.	1.1	46
59	Strigolactone inhibition of shoot branching. Nature, 2008, 455, 189-194.	27.8	1,910
60	Apical Wilting and Petiole Xylem Vessel Diameter of the rms2 Branching Mutant of Pea are Shoot Controlled and Independent of a Long-Distance Signal Regulating Branching. Plant and Cell Physiology, 2008, 49, 791-800.	3.1	11
61	Feedback Regulation of Xylem Cytokinin Content Is Conserved in Pea and Arabidopsis. Plant Physiology, 2007, 143, 1418-1428.	4.8	102
62	Order of merit. Nature, 2007, 448, 508-508.	27.8	17
63	Common regulatory themes in meristem development and whole-plant homeostasis. Current Opinion in Plant Biology, 2007, 10, 44-51.	7.1	77
64	Adventitious root formation in Grevillea (Proteaceae), an Australian native species. Scientia Horticulturae, 2006, 107, 171-175.	3.6	15
65	Axillary bud outgrowth: sending a message. Current Opinion in Plant Biology, 2006, 9, 35-40.	7.1	143
66	Branching Genes Are Conserved across Species. Genes Controlling a Novel Signal in Pea Are Coregulated by Other Long-Distance Signals. Plant Physiology, 2006, 142, 1014-1026.	4.8	287
67	Apical Dominance and Shoot Branching. Divergent Opinions or Divergent Mechanisms?. Plant Physiology, 2006, 142, 812-819.	4.8	185
68	Xylem-borne cytokinins: still in search of a role?. Journal of Experimental Botany, 2006, 57, 1-4.	4.8	21
69	Foreword to 'Legume Genomics and Genetics'. Functional Plant Biology, 2006, 33, iii.	2.1	0
70	The Branching Gene RAMOSUS1 Mediates Interactions among Two Novel Signals and Auxin in Pea. Plant Cell, 2005, 17, 464-474.	6.6	266
71	Auxin Dynamics after Decapitation Are Not Correlated with the Initial Growth of Axillary Buds. Plant Physiology, 2005, 138, 1665-1672.	4.8	126
72	Effects of nitrogen supply on xylem cytokinin delivery, transpiration and leaf expansion of pea genotypes differing in xylem-cytokinin concentration. Functional Plant Biology, 2004, 31, 903.	2.1	49

#	Article	IF	CITATIONS
73	Additional Signalling Compounds are Required to Orchestrate Plant Development. Journal of Plant Growth Regulation, 2003, 22, 15-24.	5.1	17
74	MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes and Development, 2003, 17, 1469-1474.	5.9	550
75	Axillary Meristem Development. Budding Relationships between Networks Controlling Flowering, Branching, and Photoperiod Responsiveness. Plant Physiology, 2003, 131, 927-934.	4.8	88
76	Pea rms6 mutants exhibit increased basal branching. Physiologia Plantarum, 2002, 115, 458-467.	5.2	27
77	Hormone physiology of pea mutants prevented from flowering by mutations gi or veg1. Physiologia Plantarum, 2001, 113, 285-291.	5.2	4
78	Long-Distance Signaling and the Control of Branching in therms1 Mutant of Pea. Plant Physiology, 2001, 126, 203-209.	4.8	158
79	Mutational Analysis of Branching in Pea. Evidence ThatRms1 and Rms5 Regulate the Same Novel Signal. Plant Physiology, 2001, 126, 1205-1213.	4.8	196
80	The ups and downs of signalling between root and shoot. New Phytologist, 2000, 147, 413-416.	7.3	21
81	Long-distance signalling and a mutational analysis of branching in pea. Plant Growth Regulation, 2000, 32, 193-203.	3.4	134
82	Auxin Inhibition of Decapitation-Induced Branching Is Dependent on Graft-Transmissible Signals Regulated by Genes Rms1 andRms2. Plant Physiology, 2000, 123, 689-698.	4.8	150
83	5 Reevaluating Concepts of Apical Dominance and the Control of Axillary Bud Outgrowth. Current Topics in Developmental Biology, 1998, 44, 127-169.	2.2	109
84	The rms1 Mutant of Pea Has Elevated Indole-3-Acetic Acid Levels and Reduced Root-Sap Zeatin Riboside Content but Increased Branching Controlled by Graft-Transmissible Signal(s). Plant Physiology, 1997, 115, 1251-1258.	4.8	161
85	The shoot controls zeatin riboside export from pea roots. Evidence from the branching mutant rms4. Plant Journal, 1997, 11, 339-345.	5.7	160
86	Branching in Pea (Action of Genes Rms3 and Rms4). Plant Physiology, 1996, 110, 859-865.	4.8	159
87	The gigas mutant in pea is deficient in the floral stimulus. Physiologia Plantarum, 1996, 96, 637-645.	5.2	79
88	The gigas mutant in pea is deficient in the floral stimulus. Physiologia Plantarum, 1996, 96, 637-645.	5.2	11
89	Control of Internode Length in Pisum sativum (Further Evidence for the Involvement of) Tj ETQq1 1 0.784314 rgE	BT /Overloo 4.8	ck 10 Tf 50 1

Branching Mutant rms-2 in Pisum sativum (Grafting Studies and Endogenous Indole-3-Acetic Acid) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

#	Article	IF	CITATIONS
91	MutantdnInfluences Dry Matter Distribution, Assimilate Partitioning and Flowering inLathyrus odoratusL Journal of Experimental Botany, 1992, 43, 55-62.	4.8	19