Christine Anne Beveridge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7601665/publications.pdf

Version: 2024-02-01

91 papers 11,887 citations

51 h-index 90 g-index

102 all docs

102 docs citations

102 times ranked

5704 citing authors

#	Article	IF	CITATIONS
1	Strigolactone inhibition of shoot branching. Nature, 2008, 455, 189-194.	27.8	1,910
2	MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes and Development, 2003, 17, 1469-1474.	5.9	550
3	Sugar demand, not auxin, is the initial regulator of apical dominance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6092-6097.	7.1	440
4	F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8897-8902.	7.1	394
5	Antagonistic Action of Strigolactone and Cytokinin in Bud Outgrowth Control Â. Plant Physiology, 2012, 158, 487-498.	4.8	366
6	Interactions between Auxin and Strigolactone in Shoot Branching Control. Plant Physiology, 2009, 151, 400-412.	4.8	358
7	Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20242-20247.	7.1	348
8	Strigolactone Acts Downstream of Auxin to Regulate Bud Outgrowth in Pea and Arabidopsis Â. Plant Physiology, 2009, 150, 482-493.	4.8	338
9	Diverse Roles of Strigolactones in Plant Development. Molecular Plant, 2013, 6, 18-28.	8.3	323
10	Branching Genes Are Conserved across Species. Genes Controlling a Novel Signal in Pea Are Coregulated by Other Long-Distance Signals. Plant Physiology, 2006, 142, 1014-1026.	4.8	287
11	Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea Â. Plant Physiology, 2012, 158, 1976-1987.	4.8	286
12	Roles for Auxin, Cytokinin, and Strigolactone in Regulating Shoot Branching Â. Plant Physiology, 2009, 149, 1929-1944.	4.8	280
13	The Branching Gene RAMOSUS1 Mediates Interactions among Two Novel Signals and Auxin in Pea. Plant Cell, 2005, 17, 464-474.	6.6	266
14	Strigolactones: discovery of the elusive shoot branching hormone. Trends in Plant Science, 2009, 14, 364-372.	8.8	230
15	<i>LATERAL BRANCHING OXIDOREDUCTASE</i> acts in the final stages of strigolactone biosynthesis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6301-6306.	7.1	219
16	An Update on the Signals Controlling Shoot Branching. Trends in Plant Science, 2019, 24, 220-236.	8.8	219
17	New genes in the strigolactone-related shoot branching pathway. Current Opinion in Plant Biology, 2010, 13, 34-39.	7.1	208
18	Mutational Analysis of Branching in Pea. Evidence ThatRms1 and Rms5 Regulate the Same Novel Signal. Plant Physiology, 2001, 126, 1205-1213.	4.8	196

#	Article	IF	CITATIONS
19	Strigolactones Are Involved in Root Response to Low Phosphate Conditions in Arabidopsis Â. Plant Physiology, 2012, 160, 1329-1341.	4.8	191
20	Apical Dominance and Shoot Branching. Divergent Opinions or Divergent Mechanisms?. Plant Physiology, 2006, 142, 812-819.	4.8	185
21	The Arabidopsis Ortholog of Rice DWARF27 Acts Upstream of MAX1 in the Control of Plant Development by Strigolactones Â. Plant Physiology, 2012, 159, 1073-1085.	4.8	179
22	The rms1 Mutant of Pea Has Elevated Indole-3-Acetic Acid Levels and Reduced Root-Sap Zeatin Riboside Content but Increased Branching Controlled by Graft-Transmissible Signal(s). Plant Physiology, 1997, 115, 1251-1258.	4.8	161
23	The shoot controls zeatin riboside export from pea roots. Evidence from the branching mutant rms4. Plant Journal, 1997, 11, 339-345.	5.7	160
24	Branching in Pea (Action of Genes Rms3 and Rms4). Plant Physiology, 1996, 110, 859-865.	4.8	159
25	Long-Distance Signaling and the Control of Branching in therms 1 Mutant of Pea. Plant Physiology, 2001, 126, 203-209.	4.8	158
26	Strigolactones Stimulate Internode Elongation Independently of Gibberellins Â. Plant Physiology, 2013, 163, 1012-1025.	4.8	157
27	Auxin Inhibition of Decapitation-Induced Branching Is Dependent on Graft-Transmissible Signals Regulated by Genes Rms1 andRms2. Plant Physiology, 2000, 123, 689-698.	4.8	150
28	Trehalose 6â€phosphate is involved in triggering axillary bud outgrowth in garden pea (<i>Pisum) Tj ETQq0 0 0 rg</i>	gBŢ [Overl	ock 10 Tf 50 :
29	Axillary bud outgrowth: sending a message. Current Opinion in Plant Biology, 2006, 9, 35-40.	7.1	143
30	Ready, steady, go! A sugar hit starts the race to shoot branching. Current Opinion in Plant Biology, 2015, 25, 39-45.	7.1	136
31	Long-distance signalling and a mutational analysis of branching in pea. Plant Growth Regulation, 2000, 32, 193-203.	3.4	134
32	Branching Mutant rms-2 in Pisum sativum (Grafting Studies and Endogenous Indole-3-Acetic Acid) Tj ETQq0 0 0 r	rgBT/Over	lock 10 Tf 50
33	Auxin Dynamics after Decapitation Are Not Correlated with the Initial Growth of Axillary Buds. Plant Physiology, 2005, 138, 1665-1672.	4.8	126
34	5 Reevaluating Concepts of Apical Dominance and the Control of Axillary Bud Outgrowth. Current Topics in Developmental Biology, 1998, 44, 127-169.	2.2	109
35	Feedback Regulation of Xylem Cytokinin Content Is Conserved in Pea and Arabidopsis. Plant Physiology, 2007, 143, 1418-1428.	4.8	102
36	Strigolactone Inhibition of Branching Independent of Polar Auxin Transport. Plant Physiology, 2015, 168, 1820-1829.	4.8	95

#	Article	IF	Citations
37	Regulation of shoot branching in arabidopsis by trehalose 6â€phosphate. New Phytologist, 2021, 229, 2135-2151.	7.3	95
38	Sugar availability suppresses the auxinâ€induced strigolactone pathway to promote bud outgrowth. New Phytologist, 2020, 225, 866-879.	7.3	93
39	Axillary Meristem Development. Budding Relationships between Networks Controlling Flowering, Branching, and Photoperiod Responsiveness. Plant Physiology, 2003, 131, 927-934.	4.8	88
40	Dynamics of Strigolactone Function and Shoot Branching Responses in Pisum sativum. Molecular Plant, 2013, 6, 128-140.	8.3	88
41	The gigas mutant in pea is deficient in the floral stimulus. Physiologia Plantarum, 1996, 96, 637-645.	5.2	79
42	Common regulatory themes in meristem development and whole-plant homeostasis. Current Opinion in Plant Biology, 2007, 10, 44-51.	7.1	77
43	Apical dominance. Current Biology, 2017, 27, R864-R865.	3.9	69
44	Strigolactones positively regulate chilling tolerance in pea and in <scp><i>Arabidopsis</i></scp> . Plant, Cell and Environment, 2018, 41, 1298-1310.	5.7	69
45	A phenol/chloroform-free method to extract nucleic acids from recalcitrant, woody tropical species for gene expression and sequencing. Plant Methods, 2019, 15, 62.	4.3	67
46	Pea Has Its Tendrils in Branching Discoveries Spanning a Century from Auxin to Strigolactones. Plant Physiology, 2009, 151, 985-990.	4.8	62
47	Translation of Strigolactones from Plant Hormone to Agriculture: Achievements, Future Perspectives, and Challenges. Trends in Plant Science, 2020, 25, 1087-1106.	8.8	62
48	Computational Modeling and Molecular Physiology Experiments Reveal New Insights into Shoot Branching in Pea Â. Plant Cell, 2009, 21, 3459-3472.	6.6	61
49	Hydroxyl carlactone derivatives are predominant strigolactones in <i>Arabidopsis</i> . Plant Direct, 2020, 4, e00219.	1.9	60
50	The ability of plants to produce strigolactones affects rhizosphere community composition of fungi but not bacteria. Rhizosphere, 2019, 9, 18-26.	3.0	59
51	Control of Internode Length in Pisum sativum (Further Evidence for the Involvement of) Tj ETQq1 1 0.784314 rgB7	740verlock	k 10 Tf 50 1
52	Axillary bud outgrowth in herbaceous shoots: how do strigolactones fit into the picture?. Plant Molecular Biology, 2010, 73, 27-36.	3.9	56
53	Initial Bud Outgrowth Occurs Independent of Auxin Flow from Out of Buds. Plant Physiology, 2019, 179, 55-65.	4.8	56
54	Sucrose promotes stem branching through cytokinin. Plant Physiology, 2021, 185, 1708-1721.	4.8	54

#	Article	IF	Citations
55	Models of longâ€distance transport: how is carrierâ€dependent auxin transport regulated in the stem?. New Phytologist, 2012, 194, 704-715.	7.3	53
56	HEXOKINASE1 signalling promotes shoot branching and interacts with cytokinin and strigolactone pathways. New Phytologist, 2021, 231, 1088-1104.	7.3	53
57	Effects of nitrogen supply on xylem cytokinin delivery, transpiration and leaf expansion of pea genotypes differing in xylem-cytokinin concentration. Functional Plant Biology, 2004, 31, 903.	2.1	49
58	Where to from here? The mechanisms enabling the movement of first instar caterpillars on whole plants using Helicoverpa armigera (Hýbner). Arthropod-Plant Interactions, 2008, 2, 197-207.	1.1	46
59	Conditional Auxin Response and Differential Cytokinin Profiles in Shoot Branching Mutants Â. Plant Physiology, 2014, 165, 1723-1736.	4.8	46
60	Sucrose promotes D53 accumulation and tillering in rice. New Phytologist, 2022, 234, 122-136.	7.3	45
61	Juvenility and Vegetative Phase Transition in Tropical/Subtropical Tree Crops. Frontiers in Plant Science, 2019, 10, 729.	3.6	38
62	Phloem Transport of the Receptor DWARF14 Protein Is Required for Full Function of Strigolactones. Plant Physiology, 2016, 172, 1844-1852.	4.8	32
63	Inhibition of strigolactones promotes adventitious root formation. Plant Signaling and Behavior, 2012, 7, 694-697.	2.4	29
64	Pea rms6 mutants exhibit increased basal branching. Physiologia Plantarum, 2002, 115, 458-467.	5.2	27
65	Integration of the SMXL/D53 strigolactone signalling repressors in the model of shoot branching regulation in <i>Pisum sativum</i> . Plant Journal, 2021, 107, 1756-1770.	5.7	25
66	De novo transcriptome assembly reveals high transcriptional complexity in Pisum sativum axillary buds and shows rapid changes in expression of diurnally regulated genes. BMC Genomics, 2017, 18, 221.	2.8	24
67	De novo transcriptome assembly and annotation for gene discovery in avocado, macadamia and mango. Scientific Data, 2020, 7, 9.	5.3	22
68	The ups and downs of signalling between root and shoot. New Phytologist, 2000, 147, 413-416.	7.3	21
69	Xylem-borne cytokinins: still in search of a role?. Journal of Experimental Botany, 2006, 57, 1-4.	4.8	21
70	Scion control of miRNA abundance and tree maturity in grafted avocado. BMC Plant Biology, 2019, 19, 382.	3.6	20
71	Rational Design of Novel Fluorescent Enzyme Biosensors for Direct Detection of Strigolactones. ACS Synthetic Biology, 2020, 9, 2107-2118.	3.8	20
72	MutantdnInfluences Dry Matter Distribution, Assimilate Partitioning and Flowering inLathyrus odoratusL Journal of Experimental Botany, 1992, 43, 55-62.	4.8	19

#	Article	IF	CITATIONS
73	Additional Signalling Compounds are Required to Orchestrate Plant Development. Journal of Plant Growth Regulation, 2003, 22, 15-24.	5.1	17
74	Order of merit. Nature, 2007, 448, 508-508.	27.8	17
75	Computational analysis of flowering in pea (<i>Pisum sativum</i>). New Phytologist, 2009, 184, 153-167.	7.3	16
76	Adventitious root formation in Grevillea (Proteaceae), an Australian native species. Scientia Horticulturae, 2006, 107, 171-175.	3.6	15
77	Strigolactones and the Coordinated Development of Shoot and Root. Signaling and Communication in Plants, 2013, , 189-204.	0.7	15
78	A Rapid Method for Quantifying RNA and Phytohormones From a Small Amount of Plant Tissue. Frontiers in Plant Science, 2020, 11, 605069.	3.6	15
79	Adaptive divergence in shoot gravitropism creates hybrid sterility in an Australian wildflower. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
80	IPA1: a direct target of SL signaling. Cell Research, 2017, 27, 1191-1192.	12.0	14
81	Molecular dissection of the pea shoot apical meristem*. Journal of Experimental Botany, 2009, 60, 4201-4213.	4.8	13
82	Apical Wilting and Petiole Xylem Vessel Diameter of the rms2 Branching Mutant of Pea are Shoot Controlled and Independent of a Long-Distance Signal Regulating Branching. Plant and Cell Physiology, 2008, 49, 791-800.	3.1	11
83	The gigas mutant in pea is deficient in the floral stimulus. Physiologia Plantarum, 1996, 96, 637-645.	5.2	11
84	Ancestral sequence reconstruction of the <scp>CYP711</scp> family reveals functional divergence in strigolactone biosynthetic enzymes associated with gene duplication events in monocot grasses. New Phytologist, 2022, 235, 1900-1912.	7.3	9
85	Plasticity of bud outgrowth varies at cauline and rosette nodes in <i>Arabidopsis thaliana</i> Physiology, 2022, 188, 1586-1603.	4.8	7
86	Investigations into the emergent properties of gene-to-phenotype networks across cycles of selection: a case study of shoot branching in plants. In Silico Plants, 2022, 4, .	1.9	6
87	Hormone physiology of pea mutants prevented from flowering by mutations gi or veg1. Physiologia Plantarum, 2001, 113, 285-291.	5.2	4
88	Correction for Agusti et al., Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14277-14277.	7.1	3
89	Strigolactones. Current Biology, 2014, 24, R987-R988.	3.9	3
90	MicroRNA control of flowering and annual crop cycle in tropical/subtropical horticultural trees. Acta Horticulturae, 2018, , 681-686.	0.2	3

#	Article	IF	CITATIONS
91	Foreword to 'Legume Genomics and Genetics'. Functional Plant Biology, 2006, 33, iii.	2.1	O