
Wim P Burmeister

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7600829/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The crystal structures of Sinapis alba myrosinase and a covalent glycosyl–enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase. Structure, 1997, 5, 663-676.	3.3	280
2	Crystal Structure of Species D Adenovirus Fiber Knobs and Their Sialic Acid Binding Sites. Journal of Virology, 2004, 78, 7727-7736.	3.4	156
3	Crystal structure of a monocotyledon (maize ZMGlu1) β-glucosidase and a model of its complex with p-nitrophenyl β-d-thioglucoside. Biochemical Journal, 2001, 354, 37-46.	3.7	107
4	Crystal structure of a monocotyledon (maize ZMGlu1) β-glucosidase and a model of its complex with p-nitrophenyl β-d-thioglucoside. Biochemical Journal, 2001, 354, 37.	3.7	76
5	EBV Lytic-Phase Protein BGLF5 Contributes to TLR9 Downregulation during Productive Infection. Journal of Immunology, 2011, 186, 1694-1702.	0.8	76
6	Structure of the Fiber Head of Ad3, a Non-CAR-Binding Serotype of Adenovirus. Virology, 2001, 285, 302-312.	2.4	62
7	Crystal structure at 1.1à resolution of an insect myrosinase from Brevicoryne brassicae shows its close relationship to β-glucosidases. Insect Biochemistry and Molecular Biology, 2005, 35, 1311-1320.	2.7	58
8	The Monomeric dUTPase from Epstein-Barr Virus Mimics Trimeric dUTPases. Structure, 2005, 13, 1299-1310.	3.3	49
9	A Bridge Crosses the Active-Site Canyon of the Epstein–Barr Virus Nuclease with DNase and RNase Activities. Journal of Molecular Biology, 2009, 391, 717-728.	4.2	46
10	Structure of RavA MoxR AAA+ protein reveals the design principles of a molecular cage modulating the inducible lysine decarboxylase activity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22499-22504.	7.1	45
11	Structure of the Epstein-Barr Virus Oncogene BARF1. Journal of Molecular Biology, 2006, 359, 667-678.	4.2	43
12	The Crystal Structure of the Epstein–Barr Virus Protease Shows Rearrangement of the Processed C Terminus. Journal of Molecular Biology, 2002, 324, 89-103.	4.2	39
13	Allosteric competitive inactivation of hematopoietic CSF-1 signaling by the viral decoy receptor BARF1. Nature Structural and Molecular Biology, 2012, 19, 938-947.	8.2	39
14	Low-Resolution Structure of Vaccinia Virus DNA Replication Machinery. Journal of Virology, 2013, 87, 1679-1689.	3.4	37
15	The vaccinia virus DNA polymerase structure provides insights into the mode of processivity factor binding. Nature Communications, 2017, 8, 1455.	12.8	31
16	The "Bridge―in the Epstein-Barr Virus Alkaline Exonuclease Protein BGLF5 Contributes to Shutoff Activity during Productive Infection. Journal of Virology, 2012, 86, 9175-9187.	3.4	28
17	The Flexible Motif V of Epstein-Barr Virus Deoxyuridine 5′-Triphosphate Pyrophosphatase Is Essential for Catalysis. Journal of Biological Chemistry, 2009, 284, 25280-25289.	3.4	27
18	Crystal Structure of the Vaccinia Virus DNA Polymerase Holoenzyme Subunit D4 in Complex with the A20 N-Terminal Domain. PLoS Pathogens, 2014, 10, e1003978.	4.7	27

WIM P BURMEISTER

#	Article	IF	CITATIONS
19	The glucosinolate–myrosinase system. New insights into enzyme–substrate interactions by use of simplified inhibitors. Organic and Biomolecular Chemistry, 2005, 3, 1872.	2.8	25
20	Crystal Structure of the Vaccinia Virus Uracil-DNA Glycosylase in Complex with DNA. Journal of Biological Chemistry, 2015, 290, 17923-17934.	3.4	24
21	CryoEM structure of adenovirus type 3 fibre with desmoglein 2 shows an unusual mode of receptor engagement. Nature Communications, 2019, 10, 1181.	12.8	24
22	Domain Organization of Vaccinia Virus Helicase-Primase D5. Journal of Virology, 2016, 90, 4604-4613.	3.4	22
23	Identification of new interacting partners of the shuttling protein ubinuclein (Ubn-1). Experimental Cell Research, 2012, 318, 509-520.	2.6	17
24	Solution Structure of the C-terminal Domain of A20, the Missing Brick for the Characterization of the Interface between Vaccinia Virus DNA Polymerase and its Processivity Factor. Journal of Molecular Biology, 2021, 433, 167009.	4.2	14
25	Structure Determination of Feline Calicivirus Virus-Like Particles in the Context of a Pseudo-Octahedral Arrangement. PLoS ONE, 2015, 10, e0119289.	2.5	11
26	Interaction of Ubinuclein-1, a nuclear and adhesion junction protein, with the 14-3-3 epsilon protein in epithelial cells: Implication of the PKA pathway. European Journal of Cell Biology, 2013, 92, 105-111.	3.6	10
27	Structural analysis of point mutations at the <i>Vaccinia virus</i> A20/D4 interface. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 687-691.	0.8	7
28	Kinetics, inhibition and oligomerization of Epstein-Barr virus protease. FEBS Letters, 2006, 580, 6570-6578.	2.8	5
29	Production and characterisation of Epstein–Barr virus helicase–primase complex and its accessory protein BBLF2/3. Virus Genes, 2015, 51, 171-181.	1.6	4
30	Inhibition of Epstein–Barr virus replication by small interfering RNA targeting the Epstein–Barr virus protease gene. Antiviral Therapy, 2009, 14, 655-662.	1.0	3
31	A micromolar O-sulfated thiohydroximate inhibitor bound to plant myrosinase. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 152-155.	0.7	2
32	Intermediate-resolution crystal structure of the human adenovirus B serotype 3 fibre knob in complex with the EC2-EC3 fragment of desmogleinÂ2. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 750-757.	0.8	1
33	Structure des enzymes de réplication du virus Epstein-Barr. Virologie, 2012, 16, 185-198.	0.1	1