Fabian Rentzsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7599936/publications.pdf

Version: 2024-02-01

361413 434195 1,900 31 20 31 citations h-index g-index papers 39 39 39 1690 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Histone demethylase Lsd1 is required for the differentiation of neural cells in Nematostella vectensis. Nature Communications, 2022, 13, 465.	12.8	11
2	TRPM2 causes sensitization to oxidative stress but attenuates high-temperature injury in the sea anemone <i>Nematostella vectensis</i>). Journal of Experimental Biology, 2022, 225, .	1.7	4
3	<i>lnsm1</i> -expressing neurons and secretory cells develop from a common pool of progenitors in the sea anemone <i>Nematostella vectensis</i> . Science Advances, 2022, 8, eabi7109.	10.3	15
4	NvPOU4/Brain3 Functions as a Terminal Selector Gene in the Nervous System of the Cnidarian Nematostella vectensis. Cell Reports, 2020, 30, 4473-4489.e5.	6.4	44
5	The genetic basis for PRC1 complex diversity emerged early in animal evolution. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22880-22889.	7.1	22
6	Generating Transgenic Reporter Lines for Studying Nervous System Development in the Cnidarian Nematostella vectensis. Methods in Molecular Biology, 2020, 2047, 45-57.	0.9	4
7	Modern genomic tools reveal the structural and cellular diversity of cnidarian nervous systems. Current Opinion in Neurobiology, 2019, 56, 87-96.	4.2	23
8	A novel protein domain in an ancestral splicing factor drove the evolution of neural microexons. Nature Ecology and Evolution, 2019, 3, 691-701.	7.8	63
9	Making head or tail of cnidarian hox gene function. Nature Communications, 2018, 9, 2187.	12.8	7
10	Back to the Basics: Cnidarians Start to Fire. Trends in Neurosciences, 2017, 40, 92-105.	8.6	102
11	Unipotent progenitors contribute to the generation of sensory cell types in the nervous system of the cnidarian Nematostella vectensis. Developmental Biology, 2017, 431, 59-68.	2.0	24
12	The cellular and molecular basis of cnidarian neurogenesis. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e257.	5.9	68
13	Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways. Developmental Cell, 2017, 43, 744-762.e11.	7.0	92
14	The rise of the starlet sea anemone <i>Nematostella vectensis</i> as a model system to investigate development and regeneration. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 408-428.	5.9	121
15	Genomics and development of Nematostella vectensis and other anthozoans. Current Opinion in Genetics and Development, 2016, 39, 63-70.	3.3	29
16	Glypican 1/2/4/6 and sulfated glycosaminoglycans regulate the patterning of the primary body axis in the cnidarian Nematostella vectensis. Developmental Biology, 2016, 414, 108-120.	2.0	7
17	Development of the aboral domain in <i>Nematostella</i> requires <i>î²-catenin</i> and the opposing activities of <i>six3/6</i> and <i>frizzled5/8</i> . Development (Cambridge), 2016, 143, 1766-77.	2.5	59

#	Article	IF	Citations
19	Regulation of <i>Nematostella </i> neural progenitors by SoxB, Notch and bHLH genes. Development (Cambridge), 2015, 142, 3332-3342.	2.5	70
20	Molecular characterization of the apical organ of the anthozoan Nematostella vectensis. Developmental Biology, 2015, 398, 120-133.	2.0	52
21	A cnidarian homologue of an insect gustatory receptor functions in developmental body patterning. Nature Communications, 2015, 6, 6243.	12.8	57
22	Neural nets. Current Biology, 2015, 25, R782-R786.	3.9	21
23	RGM Regulates BMP-Mediated Secondary Axis Formation in the Sea Anemone Nematostella vectensis. Cell Reports, 2014, 9, 1921-1930.	6.4	50
24	Cnidarian microRNAs frequently regulate targets by cleavage. Genome Research, 2014, 24, 651-663.	5 . 5	104
25	Transgenic analysis of a <i>SoxB</i> gene reveals neural progenitor cells in the cnidarian <i>Nematostella vectensis</i> . Development (Cambridge), 2014, 141, 4681-4689.	2.5	103
26	The Xenopus doublesex-related gene Dmrt5 is required for olfactory placode neurogenesis. Developmental Biology, 2013, 373, 39-52.	2.0	37
27	The Bilaterian Head Patterning Gene six3/6 Controls Aboral Domain Development in a Cnidarian. PLoS Biology, 2013, 11, e1001488.	5. 6	144
28	Nervous systems of the sea anemone <i>Nematostella vectensis</i> are generated by ectoderm and endoderm and shaped by distinct mechanisms. Development (Cambridge), 2012, 139, 347-357.	2.5	152
29	Molecular analysis of heparan sulfate biosynthetic enzyme machinery and characterization of heparan sulfate structure in <i>Nematostella vectensis</i> . Biochemical Journal, 2009, 419, 585-593.	3.7	19
30	FGF signalling controls formation of the apical sensory organ in the cnidarian <i>Nematostella vectensis</i> . Development (Cambridge), 2008, 135, 1761-1769.	2. 5	159
31	Asymmetric expression of the BMP antagonists chordin and gremlin in the sea anemone Nematostella vectensis: Implications for the evolution of axial patterning. Developmental Biology, 2006, 296, 375-387.	2.0	160