Tiago Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7599880/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant derived and dietary phenolic antioxidants: Anticancer properties. Food Chemistry, 2015, 183, 235-258.	8.2	340
2	Alzheimer's disease, enzyme targets and drug discovery struggles: From natural products to drug prototypes. Ageing Research Reviews, 2014, 15, 116-145.	10.9	141
3	Chromone, a Privileged Scaffold for the Development of Monoamine Oxidase Inhibitors. Journal of Medicinal Chemistry, 2011, 54, 5165-5173.	6.4	140
4	Lipophilic Caffeic and Ferulic Acid Derivatives Presenting Cytotoxicity against Human Breast Cancer Cells. Chemical Research in Toxicology, 2011, 24, 763-774.	3.3	115
5	Caffeic acid derivatives, analogs and applications: a patent review (2009 – 2013). Expert Opinion on Therapeutic Patents, 2014, 24, 1257-1270.	5.0	87
6	Discovery of New Chemical Entities for Old Targets: Insights on the Lead Optimization of Chromone-Based Monoamine Oxidase B (MAO-B) Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 5879-5893.	6.4	87
7	Alzheimer's Disease, Cholesterol, and Statins: The Junctions of Important Metabolic Pathways. Angewandte Chemie - International Edition, 2013, 52, 1110-1121.	13.8	56
8	Exploring nature profits: Development of novel and potent lipophilic antioxidants based on galloyl–cinnamic hybrids. European Journal of Medicinal Chemistry, 2013, 62, 289-296.	5.5	52
9	Antioxidant therapy: Still in search of the â€~magic bullet'. Mitochondrion, 2013, 13, 427-435.	3.4	49
10	Coumarin versus Chromone Monoamine Oxidase B Inhibitors: Quo Vadis?. Journal of Medicinal Chemistry, 2017, 60, 7206-7212.	6.4	47
11	NO and HNO donors, nitrones, and nitroxides: Past, present, and future. Medicinal Research Reviews, 2018, 38, 1159-1187.	10.5	47
12	Alzheimer's Disease and Antioxidant Therapy: How Long How Far?. Current Medicinal Chemistry, 2013, 20, 2939-2952.	2.4	47
13	Discovery of two new classes of potent monoamine oxidase-B inhibitors by tricky chemistry. Chemical Communications, 2015, 51, 2832-2835.	4.1	44
14	Microencapsulation of caffeic acid phenethyl ester and caffeic acid phenethyl amide by inclusion in hydroxypropyl-β-cyclodextrin. Food Chemistry, 2018, 254, 260-265.	8.2	35
15	Benzoic acid-derived nitrones: A new class of potential acetylcholinesterase inhibitors and neuroprotective agents. European Journal of Medicinal Chemistry, 2019, 174, 116-129.	5.5	35
16	Development of Blood–Brain Barrier Permeable Nitrocatechol-Based Catechol <i>O</i> -Methyltransferase Inhibitors with Reduced Potential for Hepatotoxicity. Journal of Medicinal Chemistry, 2016, 59, 7584-7597.	6.4	32
17	Hydroxybenzoic Acid Derivatives as Dual-Target Ligands: Mitochondriotropic Antioxidants and Cholinesterase Inhibitors. Frontiers in Chemistry, 2018, 6, 126.	3.6	32
18	Lessons from black pepper: piperine and derivatives thereof. Expert Opinion on Therapeutic Patents, 2016, 26, 245-264.	5.0	31

TIAGO SILVA

#	Article	IF	CITATIONS
19	Design of novel monoamine oxidase-B inhibitors based on piperine scaffold: Structure-activity-toxicity, drug-likeness and efflux transport studies. European Journal of Medicinal Chemistry, 2020, 185, 111770.	5.5	30
20	Derivatives of caffeic acid, a natural antioxidant, as the basis for the discovery of novel nonpeptidic neurotrophic agents. Bioorganic and Medicinal Chemistry, 2017, 25, 3235-3246.	3.0	26
21	Exploring cinnamic acid scaffold: development of promising neuroprotective lipophilic antioxidants. MedChemComm, 2015, 6, 1043-1053.	3.4	25
22	Long Chain Alkyl Esters of Hydroxycinnamic Acids as Promising Anticancer Agents: Selective Induction of Apoptosis in Cancer Cells. Journal of Agricultural and Food Chemistry, 2017, 65, 7228-7239.	5.2	25
23	New insights into the antioxidant activity of hydroxycinnamic and hydroxybenzoic systems: Spectroscopic, electrochemistry, and cellular studies. Free Radical Research, 2014, 48, 1473-1484.	3.3	23
24	Repurposing nitrocatechols: 5-Nitro-α-cyanocarboxamide derivatives of caffeic acid and caffeic acid phenethyl ester effectively inhibit aggregation of tau-derived hexapeptide AcPHF6. European Journal of Medicinal Chemistry, 2019, 167, 146-152.	5.5	20
25	Biology-oriented development of novel lipophilic antioxidants with neuroprotective activity. RSC Advances, 2015, 5, 15800-15811.	3.6	19
26	Liver says no: the ongoing search for safe catechol O-methyltransferase inhibitors to replace tolcapone. Drug Discovery Today, 2020, 25, 1846-1854.	6.4	16
27	Caffeic Acid Alkyl Amide Derivatives Ameliorate Oxidative Stress and Modulate ERK1/2 and AKT Signaling Pathways in a Rat Model of Diabetic Retinopathy. Chemistry and Biodiversity, 2019, 16, e1900405.	2.1	13
28	Effects of Chlorophenoxy Herbicides and Their Main Transformation Products on DNA Damage and Acetylcholinesterase Activity. BioMed Research International, 2014, 2014, 1-10.	1.9	11
29	Insights into the Discovery of Novel Neuroprotective Agents: A Comparative Study between Sulfanylcinnamic Acid Derivatives and Related Phenolic Analogues. Molecules, 2019, 24, 4405.	3.8	11
30	Design, Synthesis and Biological Evaluation of New Antioxidant and Neuroprotective Multitarget Directed Ligands Able to Block Calcium Channels. Molecules, 2020, 25, 1329.	3.8	11
31	Novel propargylamine-based inhibitors of cholinesterases and monoamine oxidases: Synthesis, biological evaluation and docking study. Bioorganic Chemistry, 2021, 116, 105301.	4.1	11
32	Discovery of neurotrophic agents based on hydroxycinnamic acid scaffold. Chemical Biology and Drug Design, 2016, 88, 926-937.	3.2	10
33	Pharmacodynamic evaluation of novel Catechol-O-methyltransferase inhibitors. European Journal of Pharmacology, 2019, 847, 53-60.	3.5	9
34	Hydroxycinnamic acid as a novel scaffold for the development of cyclooxygenase-2 inhibitors. RSC Advances, 2015, 5, 58902-58911.	3.6	7
35	Bioisosteric OH- to SH-replacement changes the antioxidant profile of ferulic acid. Organic and Biomolecular Chemistry, 2019, 17, 9646-9654.	2.8	6
36	Modulation of ERK1/2 and Akt Pathways Involved in the Neurotrophic Action of Caffeic Acid Alkyl Esters. Molecules, 2018, 23, 3340.	3.8	5

#	ARTICLE	IF	CITATIONS
37	Mitochondrial Impairment by MitoBloCK-6 Inhibits Liver Cancer Cell Proliferation. Frontiers in Cell and Developmental Biology, 2021, 9, 725474.	3.7	4
38	Receptores A3 da adenosina: uma nova abordagem terapêutica no câncer. Quimica Nova, 2011, 34, 1417-1424.	0.3	2