Riccardo Flamini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7599072/publications.pdf

Version: 2024-02-01

471509 454955 33 964 17 30 citations h-index g-index papers 36 36 36 1335 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Chemical compounds released from five different woods used to make barrels for aging wines and spirits: volatile compounds and polyphenols. Wood Science and Technology, 2009, 43, 375-385.	3.2	93
2	Changes in Chemical Composition of a Red Wine Aged in Acacia, Cherry, Chestnut, Mulberry, and Oak Wood Barrels. Journal of Agricultural and Food Chemistry, 2009, 57, 1915-1920.	5.2	90
3	An innovative approach to grape metabolomics: stilbene profiling by suspect screening analysis. Metabolomics, 2013, 9, 1243-1253.	3.0	87
4	Influence of Non-Saccharomyces on Wine Chemistry: A Focus on Aroma-Related Compounds. Molecules, 2021, 26, 644.	3.8	71
5	GC/MS-positive ion chemical ionization and MS/MS study of volatile benzene compounds in five different woods used in barrel making. Journal of Mass Spectrometry, 2007, 42, 641-646.	1.6	66
6	Effects of Elicitors, Viticultural Factors, and Enological Practices on Resveratrol and Stilbenes in Grapevine and Wine. Mini-Reviews in Medicinal Chemistry, 2012, 12, 1366-1381.	2.4	54
7	Study of Grape Polyphenols by Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC/QTOF) and Suspect Screening Analysis. Journal of Analytical Methods in Chemistry, 2015, 2015, 1-10.	1.6	53
8	Wine Resveratrol: From the Ground Up. Nutrients, 2016, 8, 222.	4.1	45
9	Profiling of grape monoterpene glycosides (aroma precursors) by ultraâ€high performanceâ€liquid chromatographyâ€high resolution mass spectrometry (UHPLC/QTOF). Journal of Mass Spectrometry, 2014, 49, 1214-1222.	1.6	43
10	Stilbene oligomer phytoalexins in grape as a response to Aspergillus carbonarius infection. Physiological and Molecular Plant Pathology, 2016, 93, 112-118.	2.5	38
11	Characterization of Non-Anthocyanic Flavonoids in Some Hybrid Red Grape Extracts Potentially Interesting for Industrial Uses. Molecules, 2015, 20, 18095-18106.	3.8	33
12	Changes in grape polyphenols (<i>V. vinifera L</i> .) as a consequence of postâ€harvest withering by highâ€resolution mass spectrometry: Raboso Piave <i>versus</i> Corvina. Journal of Mass Spectrometry, 2016, 51, 750-760.	1.6	25
13	Effect of preâ€bloom leaf removal on grape aroma composition and wine sensory profile of Semillon cultivar. Journal of the Science of Food and Agriculture, 2018, 98, 1674-1684.	3 . 5	25
14	High-Resolution Mass Spectrometry Identification of Secondary Metabolites in Four Red Grape Varieties Potentially Useful as Traceability Markers of Wines. Beverages, 2018, 4, 74.	2.8	25
15	Chemical Characterization and Enological Potential of Raboso Varieties by Study of Secondary Grape Metabolites. Journal of Agricultural and Food Chemistry, 2010, 58, 11364-11371.	5 . 2	23
16	Putative identification of new <i>p</i> â€coumaroyl glycoside flavonoids in grape by ultraâ€high performance liquid chromatography/highâ€resolution mass spectrometry. Rapid Communications in Mass Spectrometry, 2015, 29, 357-366.	1.5	23
17	LCâ€QTOF characterization of nonâ€anthocyanic flavonoids in four Tunisian fig varieties. Journal of Mass Spectrometry, 2018, 53, 817-823.	1.6	23
18	Seed oil triglyceride profiling of thirtyâ€ŧwo hybrid grape varieties. Journal of Mass Spectrometry, 2012, 47, 1113-1119.	1.6	17

#	Article	IF	CITATIONS
19	Combining liquid chromatography and tandem mass spectrometry approaches to the study of monoterpene glycosides (aroma precursors) in wine grape. Journal of Mass Spectrometry, 2018, 53, 792-800.	1.6	17
20	Changes in volatile compounds of grape pomace distillate (Italian grappa) during one-year ageing in oak and cherry barrels. Food Chemistry, 2021, 344, 128658.	8.2	14
21	High-resolution mass spectrometry metabolomics of grape chemical markers to reveal use of not-allowed varieties in the production of Amarone and Recioto wines. Metabolomics, 2018, 14, 124.	3.0	11
22	UHPLCâ€ESIâ€QqTOFâ€MS/MS characterization of minor chlorogenic acids in roasted <scp><i>Coffea arabica</i></scp> from different geographical origin. Journal of Mass Spectrometry, 2018, 53, 763-771.	1.6	11
23	Insights on the stilbenes in Raboso Piave grape (<scp><i>Vitis vinifera</i></scp> L.) as a consequence of postharvest <i>vs</i> onâ€vine dehydration. Journal of the Science of Food and Agriculture, 2018, 98, 1961-1967.	3.5	10
24	High Performance Liquid Chromatography Analysis of Grape and Wine Polyphenols., 0,, 33-79.		9
25	Effects of Traditional and Modern Post-Harvest Withering Processes on the Composition of the Vitis v. Corvina Grape and the Sensory Profile of Amarone Wines. Molecules, 2021, 26, 5198.	3.8	7
26	Mass spectrometry in the study of wood compounds released in the barrelâ€aged wine and spirits. Mass Spectrometry Reviews, 2023, 42, 1174-1220.	5.4	5
27	Identification of new glycosidic terpenols and norisoprenoids (aroma precursors) in C. arabica L. green coffee by using a high-resolution mass spectrometry database developed in grape metabolomics. Current Research in Food Science, 2022, 5, 336-344.	5.8	5
28	Thiol precursors in <i>Vitis</i> mouldâ€tolerant hybrid varieties. Journal of the Science of Food and Agriculture, 2020, 100, 3262-3268.	3 . 5	4
29	Extraction and Analysis of Phenolic Compounds from Grape Berries. Methods in Molecular Biology, 2022, 2469, 1-17.	0.9	3
30	Characterization of ellagitannins and oak lactone precursors in oak woodâ€aged grappa by highâ€resolution mass spectrometry. Journal of Mass Spectrometry, 2020, 55, e4472.	1.6	2
31	Elucidations on the Structures of Some Putative Flavonoids identified in Post-Harvest Withered Grapes (V. vinifera L .) by Quadrupole/Time-Of-Flight Mass Spectrometry. Journal of Mass Spectrometry, 2020, 55, e4639.	1.6	2
32	First investigation on polyphenols and glycosidic aroma precursors in a spontaneous colour mutant of  Clera', the principal grape variety of Prosecco sparkling wine. Journal of the Science of Food and Agriculture, 0, , .	3 . 5	1
33	Coupling between high-resolution mass spectrometry and focalized data-analysis methods provides the identification of new putative glycosidic non-anthocyanic flavonoids in grape. Metabolomics, 2022, 18, .	3.0	1