Tiit Teder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/759821/publications.pdf Version: 2024-02-01

TIIT TEDED

6

#	Article	IF	CITATIONS
1	Artificial field defects: A low-cost measure to support arthropod diversity in arable fields. Agriculture, Ecosystems and Environment, 2022, 325, 107748.	5.3	4
2	Subtle structures with notâ€soâ€subtle functions: A data set of arthropod constructs and their host plants. Ecology, 2022, 103, e3639.	3.2	2
3	Climate variability and aridity modulate the role of leaf shelters for arthropods: A global experiment. Global Change Biology, 2022, 28, 3694-3710.	9.5	12
4	Why do males emerge before females? Sexual size dimorphism drives sexual bimaturism in insects. Biological Reviews, 2021, 96, 2461-2475.	10.4	26
5	Bees increase seed set of wild plants while the proportion of arable land has a variable effect on pollination in European agricultural landscapes. Plant Ecology and Evolution, 2021, 154, 341-350.	0.7	11
6	Forest proximity supports bumblebee species richness and abundance in hemi-boreal agricultural landscape. Agriculture, Ecosystems and Environment, 2020, 298, 106961.	5.3	19
7	Conserving woodland butterflies in managed forests: Both local and landscape factors matter. Forest Ecology and Management, 2020, 462, 118002.	3.2	5
8	Phenological responses to climate warming in temperate moths and butterflies: species traits predict future changes in voltinism. Oikos, 2020, 129, 1051-1060.	2.7	25
9	Invasive host caught up with a native parasitoid: field data reveal high parasitism of Harmonia axyridis by Dinocampus coccinellae in Central Europe. Biological Invasions, 2019, 21, 2795-2802.	2.4	16
10	Ontogeny of sexual size dimorphism revisited: Females grow for a longer time and also faster. PLoS ONE, 2019, 14, e0215317.	2.5	10
11	Dispersal of open-habitat butterflies in managed forest landscapes: are colonisers special?. Journal of Insect Conservation, 2019, 23, 259-267.	1.4	2
12	Sublethal effects enhance detrimental impact of insecticides on non-target organisms: A quantitative synthesis in parasitoids. Chemosphere, 2019, 214, 371-378.	8.2	14
13	Distribution of Butterflies (Lepidoptera: Papilionoidea) in Estonia: Results of a Systematic Mapping Project Reveal Long-Term Trends. Annales Zoologici Fennici, 2019, 56, 147.	0.6	5
14	The evolution of maleâ€biased sexual size dimorphism is associated with increased body size plasticity in males. Functional Ecology, 2018, 32, 581-591.	3.6	48
15	Disperse or die: Colonisation of transient open habitats in production forests is only weakly dispersal-limited in butterflies. Biological Conservation, 2018, 218, 32-40.	4.1	22
16	Higher predation risk for insect prey at low latitudes and elevations. Science, 2017, 356, 742-744.	12.6	353
17	The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq1	l 0.78431 1.9	4 rgBT /Over 186

Tiit Teder

#	Article	IF	CITATIONS
19	Polyphagy on unpredictable resources does not exclude host specialization: insects feeding on mushrooms. Ecology, 2016, 97, 2824-2833.	3.2	20
20	Butterflies take advantage of contemporary forestry: Clear-cuts as temporary grasslands. Forest Ecology and Management, 2016, 376, 118-125.	3.2	42
21	Host ant use of the Alcon blue butterfly at the northern range margin. Journal of Insect Conservation, 2016, 20, 879-886.	1.4	4
22	Host diversity and trophic status as determinants of species richness and community composition of fungus gnats. Basic and Applied Ecology, 2015, 16, 46-53.	2.7	12
23	Searching for constraints by cross-species comparison: reaction norms for age and size at maturity in insects. Biological Journal of the Linnean Society, 2015, 114, 296-307.	1.6	11
24	Habitat use of the endangered parasitic butterfly <i>Phengaris arion</i> close to its northern distribution limit. Insect Conservation and Diversity, 2015, 8, 252-260.	3.0	7
25	Sexual size dimorphism requires a corresponding sex difference in development time: a metaâ€analysis in insects. Functional Ecology, 2014, 28, 479-486.	3.6	74
26	Age and size at maturity: A quantitative review of dietâ€induced reaction norms in insects. Evolution; International Journal of Organic Evolution, 2014, 68, 3217-3228.	2.3	58
27	Exploitative competition and coexistence in a parasitoid assemblage. Population Ecology, 2013, 55, 77-86.	1.2	6
28	The effects of seasonally variable dragonfly predation on butterfly assemblages. Ecology, 2013, 94, 200-207.	3.2	21
29	Distinguishing between anticipatory and responsive plasticity in a seasonally polyphenic butterfly. Evolutionary Ecology, 2013, 27, 315-332.	1.2	35
30	Why is body size more variable in stressful conditions: an analysis of a potential proximate mechanism. Evolutionary Ecology, 2012, 26, 1421-1432.	1.2	9
31	Dragonflies cause spatial and temporal heterogeneity in habitat quality for butterflies. Insect Conservation and Diversity, 2011, 4, 257-264.	3.0	28
32	Sexual differences in weight loss upon eclosion are related to life history strategy in Lepidoptera. Journal of Insect Physiology, 2011, 57, 712-722.	2.0	26
33	Counterintuitive size patterns in bivoltine moths: late-season larvae grow larger despite lower food quality. Oecologia, 2010, 162, 117-125.	2.0	62
34	Proximate sources of sexual size dimorphism in insects: locating constraints on larval growth schedules. Evolutionary Ecology, 2010, 24, 161-175.	1.2	48
35	Florivores decrease pollinator visitation in a self-incompatible plant. Basic and Applied Ecology, 2010, 11, 669-675.	2.7	25
36	Effects of patch size and density on flower visitation and seed set of wild plants: a panâ€European approach. Journal of Ecology, 2010, 98, 188-196.	4.0	199

TIIT TEDER

#	Article	IF	CITATIONS
37	Habitat fragmentation causes immediate and timeâ€delayed biodiversity loss at different trophic levels. Ecology Letters, 2010, 13, 597-605.	6.4	620
38	Sex Differences in Phenotypic Plasticity Affect Variation in Sexual Size Dimorphism in Insects: From Physiology to Evolution. Annual Review of Entomology, 2010, 55, 227-245.	11.8	352
39	Indirect evidence for an extinction debt of grassland butterflies half century after habitat loss. Biological Conservation, 2010, 143, 1405-1413.	4.1	89
40	Contrasting effects of plant population size on florivory and pollination. Basic and Applied Ecology, 2009, 10, 737-744.	2.7	14
41	Extinction debt: a challenge for biodiversity conservation. Trends in Ecology and Evolution, 2009, 24, 564-571.	8.7	1,053
42	Dependence of Phenotypic Variance in Body Size on Environmental Quality. American Naturalist, 2008, 172, 223-232.	2.1	34
43	Achieving high sexual size dimorphism in insects: females add instars. Ecological Entomology, 2007, 32, 243-256.	2.2	100
44	Rensch's rule in insects: patterns among and within species. , 2007, , 60-70.		56
45	Proximate Causes of Rensch's Rule: Does Sexual Size Dimorphism in Arthropods Result from Sex Differences in Development Time?. American Naturalist, 2007, 169, 245-257.	2.1	229
46	Monitoring of Biological Diversity: a Common-Ground Approach. Conservation Biology, 2007, 21, 313-317.	4.7	38
47	Sexual size dimorphism within species increases with body size in insects. Oikos, 2005, 108, 321-334.	2.7	284
48	Male-biased size dimorphism in ichneumonine wasps (Hymenoptera: Ichneumonidae) - the role of sexual selection for large male size. Ecological Entomology, 2005, 30, 342-349.	2.2	52
49	Short-term indirect interactions between two moth (Lepidoptera: Noctuidae) species mediated by shared parasitoids: The benefit of being scarce. European Journal of Entomology, 2003, 100, 323-328.	1.2	11
50	Cascading effects of variation in plant vigour on the relative performance of insect herbivores and their parasitoids. Ecological Entomology, 2002, 27, 94-104.	2.2	60
51	Large larvae of a flush-feeding moth (Epirrita autumnata, Lepidoptera: Geometridae) are not at a higher risk of parasitism: implications for the moth's life-history. European Journal of Entomology, 2001, 98, 277-282.	1.2	8
52	Temporal and spatial variation of larval parasitism in non-outbreaking populations of a folivorous moth. Oecologia, 2000, 123, 516-524.	2.0	39
53	Patterns of host use in solitary parasitoids (Hymenoptera, Ichneumonidae): field evidence from a homogeneous habitat. Ecography, 1999, 22, 79-86.	4.5	18
54	Limited Variability of Genitalia in the Genus Pimpla (Hymenoptera: Ichneumonidae): Inter- or Intraspecific Causes?. Animal Biology, 1998, 48, 335-347.	0.4	5