Carlos L Arteaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7598168/publications.pdf Version: 2024-02-01

		5876	5965
201	27,451	81	160
papers	citations	h-index	g-index
215	215	215	30401
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer. New England Journal of Medicine, 2016, 375, 1738-1748.	13.9	1,390
2	Transforming Growth Factor-β1 Mediates Epithelial to Mesenchymal Transdifferentiation through a RhoA-dependent Mechanism. Molecular Biology of the Cell, 2001, 12, 27-36.	0.9	962
3	ERBB Receptors: From Oncogene Discovery to Basic Science to Mechanism-Based Cancer Therapeutics. Cancer Cell, 2014, 25, 282-303.	7.7	817
4	Treatment of HER2-positive breast cancer: current status and future perspectives. Nature Reviews Clinical Oncology, 2012, 9, 16-32.	12.5	735
5	PKB/Akt mediates cell-cycle progression by phosphorylation of p27Kip1 at threonine 157 and modulation of its cellular localization. Nature Medicine, 2002, 8, 1145-1152.	15.2	729
6	The PI3K/AKT Pathway as a Target for Cancer Treatment. Annual Review of Medicine, 2016, 67, 11-28.	5.0	631
7	HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature, 2018, 554, 189-194.	13.7	572
8	Emergence of Constitutively Active Estrogen Receptor-α Mutations in Pretreated Advanced Estrogen Receptor–Positive Breast Cancer. Clinical Cancer Research, 2014, 20, 1757-1767.	3.2	529
9	TGF-β inhibition enhances chemotherapy action against triple-negative breast cancer. Journal of Clinical Investigation, 2013, 123, 1348-1358.	3.9	495
10	Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt Is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Research, 2002, 62, 4132-41.	0.4	471
11	Human Breast Cancer Cells Selected for Resistance to Trastuzumab <i>In vivo</i> Overexpress Epidermal Growth Factor Receptor and ErbB Ligands and Remain Dependent on the ErbB Receptor Network. Clinical Cancer Research, 2007, 13, 4909-4919.	3.2	463
12	Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene, 2003, 22, 2812-2822.	2.6	449
13	MYC and MCL1 Cooperatively Promote Chemotherapy-Resistant Breast Cancer Stem Cells via Regulation of Mitochondrial Oxidative Phosphorylation. Cell Metabolism, 2017, 26, 633-647.e7.	7.2	449
14	Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor–positive human breast cancer. Journal of Clinical Investigation, 2010, 120, 2406-2413.	3.9	447
15	Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. Journal of Clinical Investigation, 2008, 118, 2609-19.	3.9	443
16	RAS/MAPK Activation Is Associated with Reduced Tumor-Infiltrating Lymphocytes in Triple-Negative Breast Cancer: Therapeutic Cooperation Between MEK and PD-1/PD-L1 Immune Checkpoint Inhibitors. Clinical Cancer Research, 2016, 22, 1499-1509.	3.2	428
17	Buparlisib plus fulvestrant versus placebo plus fulvestrant in postmenopausal, hormone receptor-positive, HER2-negative, advanced breast cancer (BELLE-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncology, The, 2017, 18, 904-916.	5.1	427
18	HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. Cancer Cell. 2006, 10, 25-38.	7.7	426

#	Article	IF	CITATIONS
19	Epidermal Growth Factor Receptor Dependence in Human Tumors: More Than Just Expression?. Oncologist, 2002, 7, 31-39.	1.9	424
20	Molecular Profiling of the Residual Disease of Triple-Negative Breast Cancers after Neoadjuvant Chemotherapy Identifies Actionable Therapeutic Targets. Cancer Discovery, 2014, 4, 232-245.	7.7	413
21	Overcoming Endocrine Resistance in Breast Cancer. Cancer Cell, 2020, 37, 496-513.	7.7	411
22	Transcriptional and posttranslational up-regulation of HER3 (ErbB3) compensates for inhibition of the HER2 tyrosine kinase. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5021-5026.	3.3	403
23	Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases. Journal of Clinical Investigation, 2002, 109, 1551-1559.	3.9	402
24	Mutations in the phosphatidylinositol 3-kinase pathway: role in tumor progression and therapeutic implications in breast cancer. Breast Cancer Research, 2011, 13, 224.	2.2	365
25	Growth retardation and tumour inhibition by BRCA1. Nature Genetics, 1996, 12, 298-302.	9.4	359
26	Phosphatidylinositol 3-Kinase and Antiestrogen Resistance in Breast Cancer. Journal of Clinical Oncology, 2011, 29, 4452-4461.	0.8	346
27	Feedback upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2718-2723.	3.3	313
28	Inhibition of TGF-Î ² with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. Journal of Clinical Investigation, 2007, 117, 1305-1313.	3.9	307
29	PI3K/AKT/mTOR: role in breast cancer progression, drug resistance, and treatment. Cancer and Metastasis Reviews, 2016, 35, 515-524.	2.7	300
30	MEK Inhibition Leads to PI3K/AKT Activation by Relieving a Negative Feedback on ERBB Receptors. Cancer Research, 2012, 72, 3228-3237.	0.4	287
31	ERα-Dependent E2F Transcription Can Mediate Resistance to Estrogen Deprivation in Human Breast Cancer. Cancer Discovery, 2011, 1, 338-351.	7.7	284
32	BIM Expression in Treatment-NaÃ ⁻ ve Cancers Predicts Responsiveness to Kinase Inhibitors. Cancer Discovery, 2011, 1, 352-365.	7.7	268
33	A Phase Ib Study of Alpelisib (BYL719), a PI3Kα-Specific Inhibitor, with Letrozole in ER+/HER2â^' Metastatic Breast Cancer. Clinical Cancer Research, 2017, 23, 26-34.	3.2	268
34	Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER+ breast cancer. Nature Communications, 2019, 10, 1373.	5.8	252
35	Quantitative Optical Imaging of Primary Tumor Organoid Metabolism Predicts Drug Response in Breast Cancer. Cancer Research, 2014, 74, 5184-5194.	0.4	251
36	Targeting the TGF \hat{I}^2 signaling network in human neoplasia. Cancer Cell, 2003, 3, 531-536.	7.7	240

#	Article	IF	CITATIONS
37	Loss of Phosphatase and Tensin Homolog or Phosphoinositol-3 Kinase Activation and Response to Trastuzumab or Lapatinib in Human Epidermal Growth Factor Receptor 2–Overexpressing Locally Advanced Breast Cancers. Journal of Clinical Oncology, 2011, 29, 166-173.	0.8	235
38	Overview of epidermal growth factor receptor biology and its role as a therapeutic target in human neoplasia. Seminars in Oncology, 2002, 29, 3-9.	0.8	232
39	Overall Survival with Ribociclib plus Letrozole in Advanced Breast Cancer. New England Journal of Medicine, 2022, 386, 942-950.	13.9	220
40	Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance. Nature Medicine, 2012, 18, 1052-1059.	15.2	219
41	ErbB-targeted therapeutic approaches in human cancer. Experimental Cell Research, 2003, 284, 122-130.	1.2	206
42	Type I Transforming Growth Factor β Receptor Binds to and Activates Phosphatidylinositol 3-Kinase. Journal of Biological Chemistry, 2005, 280, 10870-10876.	1.6	201
43	Increased Malignancy of Neu-Induced Mammary Tumors Overexpressing Active Transforming Growth Factor β1. Molecular and Cellular Biology, 2003, 23, 8691-8703.	1.1	190
44	Trastuzumab Has Preferential Activity against Breast Cancers Driven by HER2 Homodimers. Cancer Research, 2011, 71, 1871-1882.	0.4	185
45	Elevation of Receptor Tyrosine Kinase EphA2 Mediates Resistance to Trastuzumab Therapy. Cancer Research, 2010, 70, 299-308.	0.4	182
46	Kinome-Wide RNA Interference Screen Reveals a Role for PDK1 in Acquired Resistance to CDK4/6 Inhibition in ER-Positive Breast Cancer. Cancer Research, 2017, 77, 2488-2499.	0.4	178
47	Transforming Growth Factor β Enhances Epithelial Cell Survival via Akt-dependent Regulation of FKHRL1. Molecular Biology of the Cell, 2001, 12, 3328-3339.	0.9	175
48	Mutant <i>PIK3CA</i> accelerates HER2-driven transgenic mammary tumors and induces resistance to combinations of anti-HER2 therapies. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14372-14377.	3.3	168
49	Conditional Overexpression of Active Transforming Growth Factor Î ² 1 In vivo Accelerates Metastases of Transgenic Mammary Tumors. Cancer Research, 2004, 64, 9002-9011.	0.4	164
50	Stand Up to Cancer Phase Ib Study of Pan-Phosphoinositide-3-Kinase Inhibitor Buparlisib With Letrozole in Estrogen Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative Metastatic Breast Cancer. Journal of Clinical Oncology, 2014, 32, 1202-1209.	0.8	159
51	Resistance to HER2-directed antibodies and tyrosine kinase inhibitors. Cancer Biology and Therapy, 2011, 11, 793-800.	1.5	156
52	Transforming Growth Factor β Engages TACE and ErbB3 To Activate Phosphatidylinositol-3 Kinase/Akt in ErbB2-Overexpressing Breast Cancer and Desensitizes Cells to Trastuzumab. Molecular and Cellular Biology, 2008, 28, 5605-5620.	1.1	153
53	Invasion and metastasis of a mammary tumor involves TGF-? signaling. International Journal of Cancer, 2001, 91, 76-82.	2.3	148
54	Autocrine Transforming Growth Factor-β Signaling Mediates Smad-independent Motility in Human Cancer Cells. Journal of Biological Chemistry, 2003, 278, 3275-3285.	1.6	148

#	Article	IF	CITATIONS
55	Dabrafenib and Trametinib in Patients With Tumors With <i>BRAF^{V600E}</i> Mutations: Results of the NCI-MATCH Trial Subprotocol H. Journal of Clinical Oncology, 2020, 38, 3895-3904.	0.8	145
56	Overexpression of HER2 (erbB2) in Human Breast Epithelial Cells Unmasks Transforming Growth Factor I²-induced Cell Motility. Journal of Biological Chemistry, 2004, 279, 24505-24513.	1.6	144
57	Challenges for the Clinical Development of PI3K Inhibitors: Strategies to Improve Their Impact in Solid Tumors. Cancer Discovery, 2019, 9, 482-491.	7.7	141
58	In situ single-cell analysis identifies heterogeneity for PIK3CA mutation and HER2 amplification in HER2-positive breast cancer. Nature Genetics, 2015, 47, 1212-1219.	9.4	139
59	A Kinome-Wide Screen Identifies the Insulin/IGF-I Receptor Pathway as a Mechanism of Escape from Hormone Dependence in Breast Cancer. Cancer Research, 2011, 71, 6773-6784.	0.4	138
60	Targeting HER1/EGFR: a molecular approach to cancer therapy. Seminars in Oncology, 2003, 30, 3-14.	0.8	134
61	Transforming Growth Factor β Induces Clustering of HER2 and Integrins by Activating Src-Focal Adhesion Kinase and Receptor Association to the Cytoskeleton. Cancer Research, 2009, 69, 475-482.	0.4	126
62	Inhibition of Mammalian Target of Rapamycin Is Required for Optimal Antitumor Effect of HER2 Inhibitors against HER2-Overexpressing Cancer Cells. Clinical Cancer Research, 2009, 15, 7266-7276.	3.2	124
63	A versatile oblique plane microscope for large-scale and high-resolution imaging of subcellular dynamics. ELife, 2020, 9, .	2.8	120
64	ErbB2/Neu-Induced, Cyclin D1-Dependent Transformation Is Accelerated in p27 -Haploinsufficient Mammary Epithelial Cells but Impaired in p27 -Null Cells. Molecular and Cellular Biology, 2002, 22, 2204-2219.	1.1	113
65	An Antibody That Locks HER3 in the Inactive Conformation Inhibits Tumor Growth Driven by HER2 or Neuregulin. Cancer Research, 2013, 73, 6024-6035.	0.4	109
66	Inhibition of TGFβ signaling in cancer therapy. Current Opinion in Genetics and Development, 2006, 16, 30-37.	1.5	107
67	HER3 Is Required for HER2-Induced Preneoplastic Changes to the Breast Epithelium and Tumor Formation. Cancer Research, 2012, 72, 2672-2682.	0.4	106
68	Nivolumab Is Effective in Mismatch Repair–Deficient Noncolorectal Cancers: Results From Arm Z1D—A Subprotocol of the NCI-MATCH (EAY131) Study. Journal of Clinical Oncology, 2020, 38, 214-222.	0.8	106
69	Triple-negative breast cancers with amplification of JAK2 at the 9p24 locus demonstrate JAK2-specific dependence. Science Translational Medicine, 2016, 8, 334ra53.	5.8	105
70	Phase II Study of AZD4547 in Patients With Tumors Harboring Aberrations in the FGFR Pathway: Results From the NCI-MATCH Trial (EAY131) Subprotocol W. Journal of Clinical Oncology, 2020, 38, 2407-2417.	0.8	102
71	The selective estrogen receptor downregulator GDC-0810 is efficacious in diverse models of ER+ breast cancer. ELife, 2016, 5, .	2.8	100
72	Cardio-Oncology. Circulation, 2015, 132, 2248-2258.	1.6	99

#	Article	IF	CITATIONS
73	Trastuzumab-Resistant Cells Rely on a HER2-PI3K-FoxO-Survivin Axis and Are Sensitive to PI3K Inhibitors. Cancer Research, 2013, 73, 1190-1200.	0.4	98
74	Enabling a Genetically Informed Approach to Cancer Medicine: A Retrospective Evaluation of the Impact of Comprehensive Tumor Profiling Using a Targeted Next-Generation Sequencing Panel. Oncologist, 2014, 19, 616-622.	1.9	94
75	Association of FGFR1 with ERα Maintains Ligand-Independent ER Transcription and Mediates Resistance to Estrogen Deprivation in ER+ Breast Cancer. Clinical Cancer Research, 2017, 23, 6138-6150.	3.2	94
76	Treatment of Triple-Negative Breast Cancer with TORC1/2 Inhibitors Sustains a Drug-Resistant and Notch-Dependent Cancer Stem Cell Population. Cancer Research, 2016, 76, 440-452.	0.4	93
77	Dual Blockade of HER2 in HER2-Overexpressing Tumor Cells Does Not Completely Eliminate HER3 Function. Clinical Cancer Research, 2013, 19, 610-619.	3.2	91
78	Genomic profiling of ER ⁺ breast cancers after short-term estrogen suppression reveals alterations associated with endocrine resistance. Science Translational Medicine, 2017, 9, .	5.8	91
79	TBCRC 032 IB/II Multicenter Study: Molecular Insights to AR Antagonist and PI3K Inhibitor Efficacy in Patients with AR+ Metastatic Triple-Negative Breast Cancer. Clinical Cancer Research, 2020, 26, 2111-2123.	3.2	91
80	Ribociclib plus letrozole versus letrozole alone in patients with de novo HR+, HER2â^' advanced breast cancer in the randomized MONALEESA-2 trial. Breast Cancer Research and Treatment, 2018, 168, 127-134.	1.1	90
81	Tyrosine kinase inhibitors. Cancer Cell, 2004, 5, 525-531.	7.7	89
82	The brain microenvironment mediates resistance in luminal breast cancer to PI3K inhibition through HER3 activation. Science Translational Medicine, 2017, 9, .	5.8	89
83	A Gene Expression Signature from Human Breast Cancer Cells with Acquired Hormone Independence Identifies MYC as a Mediator of Antiestrogen Resistance. Clinical Cancer Research, 2011, 17, 2024-2034.	3.2	88
84	Epidermal Growth Factor Receptor (EGFR) Antibody Down-regulates Mutant Receptors and Inhibits Tumors Expressing EGFR Mutations. Journal of Biological Chemistry, 2006, 281, 40183-40192.	1.6	85
85	An Acquired <i>HER2</i> â€^T798l Gatekeeper Mutation Induces Resistance to Neratinib in a Patient with HER2 Mutant–Driven Breast Cancer. Cancer Discovery, 2017, 7, 575-585.	7.7	85
86	Efficacy and Determinants of Response to HER Kinase Inhibition in <i>HER2</i> -Mutant Metastatic Breast Cancer. Cancer Discovery, 2020, 10, 198-213.	7.7	83
87	Drug response in organoids generated from frozen primary tumor tissues. Scientific Reports, 2016, 6, 18889.	1.6	81
88	Combination of Antibody That Inhibits Ligand-Independent HER3 Dimerization and a p110α Inhibitor Potently Blocks PI3K Signaling and Growth of HER2+ Breast Cancers. Cancer Research, 2013, 73, 6013-6023.	0.4	79
89	Autocrine IGF-I/insulin receptor axis compensates for inhibition of AKT in ER-positive breast cancer cells with resistance to estrogen deprivation. Breast Cancer Research, 2013, 15, R55.	2.2	79
90	Association with HSP90 Inhibits Cbl-Mediated Down-regulation of Mutant Epidermal Growth Factor Receptors. Cancer Research, 2006, 66, 6990-6997.	0.4	76

#	Article	IF	CITATIONS
91	Extracellular Matrix/Integrin Signaling Promotes Resistance to Combined Inhibition of HER2 and PI3K in HER2+ Breast Cancer. Cancer Research, 2017, 77, 3280-3292.	0.4	76
92	A Phase II Randomized Study of Neoadjuvant Letrozole Plus Alpelisib for Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer (NEO-ORB). Clinical Cancer Research, 2019, 25, 2975-2987.	3.2	76
93	Cyclin-Dependent Kinase Inhibitor P27Kip1 Is Required for Mouse Mammary Gland Morphogenesis and Function. Journal of Cell Biology, 2001, 153, 917-932.	2.3	75
94	Combined Blockade of Activating <i>ERBB2</i> Mutations and ER Results in Synthetic Lethality of ER+/HER2 Mutant Breast Cancer. Clinical Cancer Research, 2019, 25, 277-289.	3.2	74
95	A Phase I-II Study of Combined Blockade of the ErbB Receptor Network with Trastuzumab and Gefitinib in Patients with HER2 (ErbB2)-Overexpressing Metastatic Breast Cancer. Clinical Cancer Research, 2008, 14, 6277-6283.	3.2	69
96	ErbB3 Ablation Impairs PI3K/Akt-Dependent Mammary Tumorigenesis. Cancer Research, 2011, 71, 3941-3951.	0.4	69
97	Direct inhibition of PI3K in combination with dual HER2 inhibitors is required for optimal antitumor activity in HER2+ breast cancer cells. Breast Cancer Research, 2014, 16, R9.	2.2	69
98	<i>HER2</i> missense mutations have distinct effects on oncogenic signaling and migration. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6205-14.	3.3	69
99	Inhibition of Transforming Growth Factor-β Signaling in Human Cancer: Targeting a Tumor Suppressor Network as a Therapeutic Strategy: Fig. 1 Clinical Cancer Research, 2006, 12, 4142-4146.	3.2	68
100	Human Breast Cancer Cells Harboring a Gatekeeper T798M Mutation in HER2 Overexpress EGFR Ligands and Are Sensitive to Dual Inhibition of EGFR and HER2. Clinical Cancer Research, 2013, 19, 5390-5401.	3.2	67
101	18F-Fluoroestradiol PET/CT Measurement of Estrogen Receptor Suppression during a Phase I Trial of the Novel Estrogen Receptor-Targeted Therapeutic GDC-0810: Using an Imaging Biomarker to Guide Drug Dosage in Subsequent Trials. Clinical Cancer Research, 2017, 23, 3053-3060.	3.2	66
102	New Strategies in HER2-Overexpressing Breast Cancer: Many Combinations of Targeted Drugs Available. Clinical Cancer Research, 2011, 17, 952-958.	3.2	65
103	HER3 and mutant EGFR meet MET. Nature Medicine, 2007, 13, 675-677.	15.2	64
104	HER2-Overexpressing Breast Cancers Amplify FGFR Signaling upon Acquisition of Resistance to Dual Therapeutic Blockade of HER2. Clinical Cancer Research, 2017, 23, 4323-4334.	3.2	64
105	RNA interference (RNAi) screening approach identifies agents that enhance paclitaxel activity in breast cancer cells. Breast Cancer Research, 2010, 12, R41.	2.2	63
106	Clinical trial design and end points for epidermal growth factor receptor-targeted therapies: implications for drug development and practice. Clinical Cancer Research, 2003, 9, 1579-89.	3.2	63
107	TROPiCS-02: A Phase III study investigating sacituzumab govitecan in the treatment of HR+/HER2- metastatic breast cancer. Future Oncology, 2020, 16, 705-715.	1.1	62
108	Phase 2 study of buparlisib (BKM120), a pan-class I PI3K inhibitor, in patients with metastatic triple-negative breast cancer. Breast Cancer Research, 2020, 22, 120.	2.2	60

#	Article	IF	CITATIONS
109	TGF-Ĵ² signaling promotes tumor vasculature by enhancing the pericyte-endothelium association. BMC Cancer, 2018, 18, 670.	1.1	58
110	Melanoma response to anti-PD-L1 immunotherapy requires JAK1 signaling, but not JAK2. Oncolmmunology, 2018, 7, e1438106.	2.1	54
111	<i>FGFR1</i> Amplification Mediates Endocrine Resistance but Retains TORC Sensitivity in Metastatic Hormone Receptor–Positive (HR+) Breast Cancer. Clinical Cancer Research, 2019, 25, 6443-6451.	3.2	54
112	HER (erbB) tyrosine kinase inhibitors in the treatment of breast cancer. Seminars in Oncology, 2002, 29, 4-10.	0.8	54
113	Kinome-wide Functional Screen Identifies Role of PLK1 in Hormone-Independent, ER-Positive Breast Cancer. Cancer Research, 2015, 75, 405-414.	0.4	53
114	Impact of Genomics on Personalized Cancer Medicine. Clinical Cancer Research, 2012, 18, 612-618.	3.2	52
115	Buparlisib plus fulvestrant versus placebo plus fulvestrant for postmenopausal, hormone receptor-positive, human epidermal growth factor receptor 2-negative, advanced breast cancer: Overall survival results from BELLE-2. European Journal of Cancer, 2018, 103, 147-154.	1.3	52
116	Elacestrant (RAD1901) exhibits anti-tumor activity in multiple ER+ breast cancer models resistant to CDK4/6 inhibitors. Breast Cancer Research, 2019, 21, 146.	2.2	52
117	When Tumor Suppressor TGFβ Meets the HER2 (ERBB2) Oncogene. Journal of Mammary Gland Biology and Neoplasia, 2011, 16, 81-88.	1.0	50
118	Modeling the cancer patient with genetically engineered mice. Cancer Cell, 2004, 5, 115-120.	7.7	49
119	Will PI3K pathway inhibitors be effective as single agents in patients with cancer?. Oncotarget, 2011, 2, 1314-1321.	0.8	49
120	Optimal Targeting of HER2–PI3K Signaling in Breast Cancer: Mechanistic Insights and Clinical Implications. Cancer Research, 2013, 73, 3817-3820.	0.4	49
121	Phase II Study of Lapatinib in Combination With Trastuzumab in Patients With Human Epidermal Growth Factor Receptor 2–Positive Metastatic Breast Cancer: Clinical Outcomes and Predictive Value of Early [¹⁸ F]Fluorodeoxyglucose Positron Emission Tomography Imaging (TBCRC 003).	0.8	49
122	Trastuzumab, an appropriate first-line single-agent therapy for HER2-overexpressing metastatic breast cancer. Breast Cancer Research, 2003, 5, 96-100.	2.2	48
123	EGF Receptor As a Therapeutic Target: Patient Selection and Mechanisms of Resistance to Receptor-Targeted Drugs. Journal of Clinical Oncology, 2003, 21, 289s-291.	0.8	48
124	EGF receptor mutations in lung cancer: From humans to mice and maybe back to humans. Cancer Cell, 2006, 9, 421-423.	7.7	47
125	Co-occurring gain-of-function mutations in HER2 and HER3 modulate HER2/HER3 activation, oncogenesis, and HER2 inhibitor sensitivity. Cancer Cell, 2021, 39, 1099-1114.e8.	7.7	45
126	Activating PIK3CA Mutations Induce an Epidermal Growth Factor Receptor (EGFR)/Extracellular Signal-regulated Kinase (ERK) Paracrine Signaling Axis in Basal-like Breast Cancer*. Molecular and Cellular Proteomics, 2015, 14, 1959-1976.	2.5	44

#	Article	IF	CITATIONS
127	Discovery of Potent Myeloid Cell Leukemia-1 (Mcl-1) Inhibitors That Demonstrate in Vivo Activity in Mouse Xenograft Models of Human Cancer. Journal of Medicinal Chemistry, 2019, 62, 3971-3988.	2.9	44
128	Metabolic modulation by CDK4/6 inhibitor promotes chemokine-mediated recruitment of TÂcells into mammary tumors. Cell Reports, 2021, 35, 108944.	2.9	44
129	ERBB1 and ERBB2 Have Distinct Functions in Tumor Cell Invasion and Intravasation. Clinical Cancer Research, 2009, 15, 3733-3739.	3.2	43
130	Systematic Prioritization of Druggable Mutations in â^1⁄45000 Genomes Across 16 Cancer Types Using a Structural Genomics-based Approach. Molecular and Cellular Proteomics, 2016, 15, 642-656.	2.5	43
131	The multifunctional role of transforming growth factor (TGF)-ßs on mammary epithelial cell biology. Breast Cancer Research and Treatment, 1996, 38, 49-56.	1.1	41
132	Challenges in the development of anti-epidermal growth factor receptor therapies in breast cancer. Seminars in Oncology, 2004, 31, 3-8.	0.8	38
133	Is There a Future for AKT Inhibitors in the Treatment of Cancer?. Clinical Cancer Research, 2016, 22, 2599-2601.	3.2	38
134	Convergence of p53 and Transforming Growth Factor β (TGFβ) Signaling on Activating Expression of the Tumor Suppressor Gene maspin in Mammary Epithelial Cells. Journal of Biological Chemistry, 2007, 282, 5661-5669.	1.6	37
135	In vivo hyperspectral imaging of microvessel response to trastuzumab treatment in breast cancer xenografts. Biomedical Optics Express, 2014, 5, 2247.	1.5	37
136	Epidermal Growth Factor Receptor Dependence in Human Tumors: More Than Just Expression?. Oncologist, 2002, 7, 31-39.	1.9	37
137	Why Is This Effective HSP90 Inhibitor Not Being Developed in HER2+ Breast Cancer?. Clinical Cancer Research, 2011, 17, 4919-4921.	3.2	35
138	Pooled ctDNA analysis of the MONALEESA (ML) phase III advanced breast cancer (ABC) trials Journal of Clinical Oncology, 2020, 38, 1009-1009.	0.8	34
139	Neoadjuvant Trials in ER+ Breast Cancer: A Tool for Acceleration of Drug Development and Discovery. Cancer Discovery, 2017, 7, 561-574.	7.7	33
140	Hyperactivation of TORC1 Drives Resistance to the Pan-HER Tyrosine Kinase Inhibitor Neratinib in HER2-Mutant Cancers. Cancer Cell, 2020, 37, 183-199.e5.	7.7	33
141	Metabolic diversity within breast cancer brain-tropic cells determines metastatic fitness. Cell Metabolism, 2022, 34, 90-105.e7.	7.2	33
142	<i>PIK3CA</i> Activating Mutations: A Discordant Role in Early Versus Advanced Hormone-Dependent Estrogen Receptor–Positive Breast Cancer?. Journal of Clinical Oncology, 2014, 32, 2932-2934.	0.8	32
143	Collagen density and alignment in responsive and resistant trastuzumab-treated breast cancer xenografts. Journal of Biomedical Optics, 2015, 20, 026004.	1.4	32
144	Overview of rationale and clinical trials with signal transduction inhibitors in lung cancer. Seminars in Oncology, 2002, 29, 15-26.	0.8	31

#	Article	IF	CITATIONS
145	PIK3CA and MAP3K1 alterations imply luminal A status and are associated with clinical benefit from pan-PI3K inhibitor buparlisib and letrozole in ER+ metastatic breast cancer. Npj Breast Cancer, 2019, 5, 31.	2.3	31
146	Nuclear FGFR1 Regulates Gene Transcription and Promotes Antiestrogen Resistance in ER+ Breast Cancer. Clinical Cancer Research, 2021, 27, 4379-4396.	3.2	30
147	Complex role of tumor cell transforming growth factor (TGF)-βs on breast carcinoma progression. Journal of Mammary Gland Biology and Neoplasia, 1996, 1, 373-380.	1.0	29
148	An ERBB1-3 Neutralizing Antibody Mixture With High Activity Against Drug-Resistant HER2+ Breast Cancers With ERBB Ligand Overexpression. Journal of the National Cancer Institute, 2017, 109, .	3.0	29
149	Extended Adjuvant Therapy with Neratinib Plus Fulvestrant Blocks ER/HER2 Crosstalk and Maintains Complete Responses of ER+/HER2+ Breast Cancers: Implications to the ExteNET Trial. Clinical Cancer Research, 2019, 25, 771-783.	3.2	29
150	A kinase-inactive type II TGFÎ ² receptor impairs BMP signaling in human breast cancer cells. Biochemical and Biophysical Research Communications, 2003, 301, 108-112.	1.0	28
151	<i>PIK3CA</i> C2 Domain Deletions Hyperactivate Phosphoinositide 3-kinase (PI3K), Generate Oncogene Dependence, and Are Exquisitely Sensitive to PI3K î± Inhibitors. Clinical Cancer Research, 2018, 24, 1426-1435.	3.2	27
152	ER+ Breast Cancers Resistant to Prolonged Neoadjuvant Letrozole Exhibit an E2F4 Transcriptional Program Sensitive to CDK4/6 Inhibitors. Clinical Cancer Research, 2018, 24, 2517-2529.	3.2	26
153	Phase II Study of Copanlisib in Patients With Tumors With <i>PIK3CA</i> Mutations: Results From the NCI-MATCH ECOG-ACRIN Trial (EAY131) Subprotocol Z1F. Journal of Clinical Oncology, 2022, 40, 1552-1561.	0.8	26
154	Proline rich 11 (PRR11) overexpression amplifies PI3K signaling and promotes antiestrogen resistance in breast cancer. Nature Communications, 2020, 11, 5488.	5.8	25
155	Tumor p38MAPK signaling enhances breast carcinoma vascularization and growth by promoting expression and deposition of pro-tumorigenic factors. Oncotarget, 2017, 8, 61969-61981.	0.8	25
156	Evidence for a positive role of transforming growth factor-β in human breast cancer cell tumorigenesis. Journal of Cellular Biochemistry, 1993, 53, 187-193.	1.2	24
157	Ligand-independent phosphorylation of Y869 (Y845) links mutant EGFR signaling to stat-mediated gene expression. Experimental Cell Research, 2008, 314, 413-419.	1.2	23
158	NCCN Oncology Research Program's Investigator Steering Committee and NCCN Best Practices Committee Molecular Profiling Surveys. Journal of the National Comprehensive Cancer Network: JNCCN, 2015, 13, 1337-1346.	2.3	23
159	Differential Outcomes in Codon 12/13 and Codon 61 <i>NRAS</i> -Mutated Cancers in the Phase II NCI-MATCH Trial of Binimetinib in Patients with <i>NRAS</i> -Mutated Tumors. Clinical Cancer Research, 2021, 27, 2996-3004.	3.2	23
160	A Mathematical Model Quantifies Proliferation and Motility Effects of TGF-β on Cancer Cells. Computational and Mathematical Methods in Medicine, 2009, 10, 71-83.	0.7	22
161	Discordant Cellular Response to Presurgical Letrozole in Bilateral Synchronous ER+ Breast Cancers with a <i>KRAS</i> Mutation or <i>FGFR1</i> Gene Amplification. Molecular Cancer Therapeutics, 2012, 11, 2301-2305.	1.9	22
162	Conditional Loss of ErbB3 Delays Mammary Gland Hyperplasia Induced by Mutant <i>PIK3CA</i> without Affecting Mammary Tumor Latency, Gene Expression, or Signaling. Cancer Research, 2013, 73, 4075-4085.	0.4	22

#	Article	IF	CITATIONS
163	Functional <i><scp>KRAS</scp></i> mutations and a potential role for <scp>PI</scp> 3K/ <scp>AKT</scp> activation in Wilms tumors. Molecular Oncology, 2017, 11, 405-421.	2.1	22
164	Reply to "…and secreted tumour suppressors― Nature Genetics, 1996, 13, 269-272.	9.4	20
165	Characterization of breast cancers with PI3K mutations in an academic practice setting using SNaPshot profiling. Breast Cancer Research and Treatment, 2014, 145, 389-399.	1.1	20
166	Targeting tyrosine-kinases and estrogen receptor abrogates resistance to endocrine therapy in breast cancer. Oncotarget, 2014, 5, 9049-9064.	0.8	20
167	Phase Ib Study of Safety and Pharmacokinetics of the PI3K Inhibitor SAR245408 with the HER3-Neutralizing Human Antibody SAR256212 in Patients with Solid Tumors. Clinical Cancer Research, 2017, 23, 3520-3528.	3.2	19
168	Is Dual mTORC1 and mTORC2 Therapeutic Blockade Clinically Feasible in Cancer?. JAMA Oncology, 2019, 5, 1564.	3.4	19
169	PIK3CA mutations in Peruvian patients with HER2-amplified and triple negative non-metastatic breast cancers. Hematology/ Oncology and Stem Cell Therapy, 2014, 7, 142-148.	0.6	18
170	Cdk Inhibitor p27Kip1 and Hormone Dependence in Breast Cancer. Clinical Cancer Research, 2004, 10, 368s-371s.	3.2	18
171	Dual inhibition of Type I and Type III PI3 kinases increases tumor cell apoptosis in HER2+ breast cancers. Breast Cancer Research, 2015, 17, 148.	2.2	17
172	Clinical Development of Phosphatidylinositol-3 Kinase Pathway Inhibitors. Current Topics in Microbiology and Immunology, 2010, 347, 189-208.	0.7	15
173	First-line ribociclib (RIB) + letrozole (LET) in hormone receptor-positive (HR+), HER2-negative (HER2–) advanced breast cancer (ABC): MONALEESA-2 biomarker analyses Journal of Clinical Oncology, 2018, 36, 1022-1022.	0.8	15
174	Phosphatase and Tensin Homolog Deficiency and Resistance to Trastuzumab and Chemotherapy. Journal of Clinical Oncology, 2013, 31, 2073-2075.	0.8	14
175	Estrogen receptor coregulator binding modulator (ERX-11) enhances the activity of CDK4/6 inhibitors against estrogen receptor-positive breast cancers. Breast Cancer Research, 2019, 21, 150.	2.2	14
176	Transcriptome- and proteome-oriented identification of dysregulated eIF4G, STAT3, and Hippo pathways altered by PIK3CA H1047R in HER2/ER-positive breast cancer. Breast Cancer Research and Treatment, 2016, 160, 457-474.	1.1	13
177	FGFR signaling and endocrine resistance in breast cancer: Challenges for the clinical development of FGFR inhibitors. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188595.	3.3	13
178	Dead-box or black-box: is DDX1 a potential biomarker in breast cancer?. Breast Cancer Research and Treatment, 2011, 127, 65-67.	1.1	12
179	Epigenetic Repression of STING by MYC Promotes Immune Evasion and Resistance to Immune Checkpoint Inhibitors in Triple-Negative Breast Cancer. Cancer Immunology Research, 2022, 10, 829-843.	1.6	12
180	Exploring Biomarkers of Phosphoinositide 3â€Kinase Pathway Activation in the Treatment of Hormone Receptor Positive, Human Epidermal Growth Receptor 2 Negative Advanced Breast Cancer. Oncologist, 2019, 24, 305-312.	1.9	11

#	Article	IF	CITATIONS
181	Dabrafenib and trametinib in patients with tumors with BRAF V600E/K mutations: Results from the molecular analysis for therapy choice (MATCH) Arm H Journal of Clinical Oncology, 2019, 37, 3002-3002.	0.8	10
182	Phase II Study of Taselisib in <i>PIK3CA</i> -Mutated Solid Tumors Other Than Breast and Squamous Lung Cancer: Results From the NCI-MATCH ECOG-ACRIN Trial (EAY131) Subprotocol I. JCO Precision Oncology, 2022, 6, e2100424.	1.5	9
183	Inhibiting tyrosine kinases: successes and limitations. Cancer Biology and Therapy, 2003, 2, S79-83.	1.5	9
184	Progress in Breast Cancer: Overview. Clinical Cancer Research, 2013, 19, 6353-6359.	3.2	8
185	Motivation for Launching a Cancer Metastasis Inhibition (CMI) Program. Targeted Oncology, 2018, 13, 61-68.	1.7	8
186	Targeting LIPA independent of its lipase activity is a therapeutic strategy in solid tumors via induction of endoplasmic reticulum stress. Nature Cancer, 2022, 3, 866-884.	5.7	8
187	ERBB receptors in cancer: signaling from the inside. Breast Cancer Research, 2011, 13, 304.	2.2	7
188	Neratinib: Inching Up on the Cure Rate of HER2+ Breast Cancer?. Clinical Cancer Research, 2018, 24, 3483-3485.	3.2	6
189	Drug-Resistant Brain Metastases: A Role for Pharmacology, Tumor Evolution, and Too-Late Therapy. Cancer Discovery, 2015, 5, 1124-1126.	7.7	5
190	Unexpected Benefit from Alpelisib and Fulvestrant in a Woman with Highly Pre-treated ER-Positive, HER2-Negative PIK3CA Mutant Metastatic Breast Cancer. Clinical Drug Investigation, 2018, 38, 1071-1075.	1.1	4
191	Reply to T. Shimoi et al and Y. Shimanuki et al. Journal of Clinical Oncology, 2021, 39, JCO.21.01905.	0.8	3
192	Abstract GS2-01: Overall survival subgroup analysis by metastatic site from the phase 3 MONALEESA-2 study of first-line ribociclib + letrozole in postmenopausal patients with advanced HR+/HER2â° breast cancer. Cancer Research, 2022, 82, GS2-01-GS2-01.	0.4	2
193	Abstract PD2-05: Genomic profiling of PAM50-based intrinsic subtypes in HR+/HER2- advanced breast cancer (ABC) across the MONALEESA (ML) studies. Cancer Research, 2022, 82, PD2-05-PD2-05.	0.4	2
194	Phase 1 pilot study with dose expansion of chemotherapy in combination with CD40 agonist and Flt3 ligand in metastatic triple-negative breast cancer Journal of Clinical Oncology, 2022, 40, TPS1126-TPS1126.	0.8	2
195	Abstract P4-01-02: A spectrum of secondary mutations in <i>HER2</i> augment breast cancer cell growth and reduce neratinib sensitivity in <i>HER2</i> -mutant breast cancer. Cancer Research, 2022, 82, P4-01-02-P4-01-02.	0.4	1
196	Abstract GS3-09: Loss of <i>ASXL1</i> tumor suppressor promotes resistance to CDK4/6 inhibitors in ER+ breast cancer. Cancer Research, 2022, 82, GS3-09-GS3-09.	0.4	1
197	Abstract PD2-01: A platform of CDK4/6 inhibitor-resistant patient-derived breast cancer organoids illuminates mechanisms of resistance and therapeutic vulnerabilities. Cancer Research, 2022, 82, PD2-01-PD2-01.	0.4	1
198	Enhancement of Epidermal Growth Factor Receptor-degradation Pathway in Acquired Gefitinib-resistant Human Non-small Cell Lung Cancer Cell Lines. The Showa University Journal of Medical Sciences, 2004, 16, 147-159.	0.1	0

#	Article	IF	CITATIONS
199	Abstract PR05: P-REX1 creates a positive feedback loop to activate growth factor receptor/PI3K signaling. , 2013, , .		0
200	Hyperactivation of Torc1 Drives Resistance to the Pan-Her Tyrosine Kinase Inhibitor Neratinib in Her2-Mutant Cancers. SSRN Electronic Journal, 0, , .	0.4	0
201	Abstract P5-17-09: A genome-wide CRISPR screen identifies PRMT5 as a novel therapeutic target in ER+/ <i>RB1</i> -deficient breast cancer. Cancer Research, 2022, 82, P5-17-09-P5-17-09.	0.4	0