List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7598049/publications.pdf Version: 2024-02-01

ΗΠΙΜΕΙ

#	Article	IF	CITATIONS
1	Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chemical Society Reviews, 2013, 42, 6060.	38.1	3,000
2	Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chemical Society Reviews, 2019, 48, 1004-1076.	38.1	2,528
3	Fe ₃ O ₄ Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H ₂ O ₂ and Glucose Detection. Analytical Chemistry, 2008, 80, 2250-2254.	6.5	1,275
4	Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorganic Chemistry Frontiers, 2016, 3, 41-60.	6.0	520
5	Surface-Enhanced Raman Scattering Active Gold Nanoparticles with Enzyme-Mimicking Activities for Measuring Glucose and Lactate in Living Tissues. ACS Nano, 2017, 11, 5558-5566.	14.6	514
6	Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay. TrAC - Trends in Analytical Chemistry, 2018, 105, 218-224.	11.4	513
7	ROS scavenging Mn ₃ O ₄ nanozymes for <i>in vivo</i> anti-inflammation. Chemical Science, 2018, 9, 2927-2933.	7.4	447
8	Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chemical Communications, 2007, , 3735.	4.1	442
9	Lysozyme-stabilized gold fluorescent cluster: Synthesis and application as Hg2+ sensor. Analyst, The, 2010, 135, 1406.	3.5	405
10	Nanozymes: A clear definition with fuzzy edges. Nano Today, 2021, 40, 101269.	11.9	332
11	Enzyme Colorimetric Assay Using Unmodified Silver Nanoparticles. Analytical Chemistry, 2008, 80, 7051-7055.	6.5	294
12	Integrated Nanozymes with Nanoscale Proximity for in Vivo Neurochemical Monitoring in Living Brains. Analytical Chemistry, 2016, 88, 5489-5497.	6.5	290
13	Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Science Advances, 2020, 6, eabb2695.	10.3	271
14	Rationally Modulate the Oxidase-like Activity of Nanoceria for Self-Regulated Bioassays. ACS Sensors, 2016, 1, 1336-1343.	7.8	255
15	Nitrogen-Doped Carbon Nanomaterials as Highly Active and Specific Peroxidase Mimics. Chemistry of Materials, 2018, 30, 6431-6439.	6.7	236
16	O ₂ -generating MnO ₂ nanoparticles for enhanced photodynamic therapy of bladder cancer by ameliorating hypoxia. Theranostics, 2018, 8, 990-1004.	10.0	233
17	Monitoring of Heparin Activity in Live Rats Using Metal–Organic Framework Nanosheets as Peroxidase Mimics. Analytical Chemistry, 2017, 89, 11552-11559.	6.5	215
18	DNAzyme-based colorimetric sensing of lead (Pb ²⁺) using unmodified gold nanoparticle probes. Nanotechnology, 2008, 19, 095501.	2.6	202

#	Article	IF	CITATIONS
19	eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics. Nature Communications, 2019, 10, 704.	12.8	199
20	Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme. Nature Nanotechnology, 2011, 6, 93-97.	31.5	195
21	Multifunctional Label-Free Electrochemical Biosensor Based on an Integrated Aptamer. Analytical Chemistry, 2008, 80, 5110-5117.	6.5	186
22	2D-Metal–Organic-Framework-Nanozyme Sensor Arrays for Probing Phosphates and Their Enzymatic Hydrolysis. Analytical Chemistry, 2018, 90, 9983-9989.	6.5	184
23	Light-Responsive Metal–Organic Framework as an Oxidase Mimic for Cellular Glutathione Detection. Analytical Chemistry, 2019, 91, 8170-8175.	6.5	171
24	Solid-state electrochemiluminescence of tris(2,2′-bipyridyl) ruthenium. TrAC - Trends in Analytical Chemistry, 2008, 27, 447-459.	11.4	167
25	Nanozyme Sensor Arrays Based on Heteroatom-Doped Graphene for Detecting Pesticides. Analytical Chemistry, 2020, 92, 7444-7452.	6.5	165
26	An Orally Administered CeO ₂ @Montmorillonite Nanozyme Targets Inflammation for Inflammatory Bowel Disease Therapy. Advanced Functional Materials, 2020, 30, 2004692.	14.9	154
27	Nanozyme Sensor Arrays for Detecting Versatile Analytes from Small Molecules to Proteins and Cells. Analytical Chemistry, 2018, 90, 11696-11702.	6.5	150
28	SERS opens a new way in aptasensor for protein recognition with high sensitivity and selectivity. Chemical Communications, 2007, , 5220.	4.1	145
29	Fluorescent Graphitic Carbon Nitride-Based Nanozymes with Peroxidase-Like Activities for Ratiometric Biosensing. Analytical Chemistry, 2019, 91, 10648-10656.	6.5	139
30	Copper Tannic Acid Coordination Nanosheet: A Potent Nanozyme for Scavenging ROS from Cigarette Smoke. Small, 2020, 16, e1902123.	10.0	136
31	Integrated nanozymes: facile preparation and biomedical applications. Chemical Communications, 2018, 54, 6520-6530.	4.1	130
32	N-Doped Carbon As Peroxidase-Like Nanozymes for Total Antioxidant Capacity Assay. Analytical Chemistry, 2019, 91, 15267-15274.	6.5	126
33	Ratiometric Electrochemical Sensor for Effective and Reliable Detection of Ascorbic Acid in Living Brains. Analytical Chemistry, 2015, 87, 8889-8895.	6.5	125
34	Nanozyme-Enabled Analytical Chemistry. Analytical Chemistry, 2022, 94, 312-323.	6.5	118
35	Amplified electrochemical aptasensor taking AuNPs based sandwich sensing platform as a model. Biosensors and Bioelectronics, 2008, 23, 965-970.	10.1	117
36	Sensitive detection of protein by an aptamer-based label-free fluorescing molecular switch. Chemical Communications, 2007, , 73-75.	4.1	116

#	Article	IF	CITATIONS
37	Metabolomics Reveals the "Invisible―Responses of Spinach Plants Exposed to CeO ₂ Nanoparticles. Environmental Science & Technology, 2019, 53, 6007-6017.	10.0	115
38	Rational Design of Au@Pt Multibranched Nanostructures as Bifunctional Nanozymes. ACS Applied Materials & Interfaces, 2018, 10, 12954-12959.	8.0	114
39	Ligandâ€Dependent Activity Engineering of Glutathione Peroxidaseâ€Mimicking MILâ€47(V) Metal–Organic Framework Nanozyme for Therapy. Angewandte Chemie - International Edition, 2021, 60, 1227-1234.	13.8	111
40	Nucleobaseâ~'Metal Hybrid Materials:Â Preparation of Submicrometer-Scale, Spherical Colloidal Particles of Adenineâ~'Gold(III) via a Supramolecular Hierarchical Self-Assembly Approach. Chemistry of Materials, 2007, 19, 2987-2993.	6.7	109
41	Electrochemiluminescence of tris(2,2′â€bipyridyl)ruthenium and its applications in bioanalysis: a review. Luminescence, 2011, 26, 77-85.	2.9	105
42	A electrochemiluminescence aptasensor for detection of thrombin incorporating the capture aptamer labeled with gold nanoparticles immobilized onto the thio-silanized ITO electrode. Analytica Chimica Acta, 2008, 628, 80-86.	5.4	98
43	Multifunctional nanozymes: enzyme-like catalytic activity combined with magnetism and surface plasmon resonance. Nanoscale Horizons, 2018, 3, 367-382.	8.0	92
44	A "turn on―fluorescent probe for heparin and its oversulfated chondroitin sulfate contaminant. Chemical Science, 2015, 6, 6361-6366.	7.4	91
45	Boosting the Peroxidase-Like Activity of Nanostructured Nickel by Inducing Its 3+ Oxidation State in LaNiO ₃ Perovskite and Its Application for Biomedical Assays. Theranostics, 2017, 7, 2277-2286.	10.0	90
46	Hammett Relationship in Oxidaseâ€Mimicking Metal–Organic Frameworks Revealed through a Proteinâ€Engineeringâ€Inspired Strategy. Advanced Materials, 2021, 33, e2005024.	21.0	85
47	Microchip Capillary Electrophoresis with Solid-State Electrochemiluminescence Detector. Analytical Chemistry, 2005, 77, 7993-7997.	6.5	82
48	Electrochemiluminescence Sensor Based on Partial Sulfonation of Polystyrene with Carbon Nanotubes. Analytical Chemistry, 2007, 79, 5439-5443.	6.5	82
49	Label free electrochemiluminescence protocol for sensitive DNA detection with a tris(2,2′-bipyridyl)ruthenium(II) modified electrode based on nucleic acid oxidation. Electrochemistry Communications, 2007, 9, 1474-1479.	4.7	74
50	Size and temporal-dependent efficacy of oltipraz-loaded PLGA nanoparticles for treatment of acute kidney injury and fibrosis. Biomaterials, 2019, 219, 119368.	11.4	74
51	Data-informed discovery of hydrolytic nanozymes. Nature Communications, 2022, 13, 827.	12.8	73
52	Guided Synthesis of a Mo/Zn Dual Singleâ€Atom Nanozyme with Synergistic Effect and Peroxidaseâ€like Activity. Angewandte Chemie - International Edition, 2022, 61, .	13.8	72
53	Reusable, label-free electrochemical aptasensor for sensitive detection of small molecules. Chemical Communications, 2007, , 3780.	4.1	71
54	A carbon nanotubes based ATP apta-sensing platform and its application in cellular assay. Biosensors and Bioelectronics, 2010, 25, 1897-1901.	10.1	70

#	Article	IF	CITATIONS
55	Field-amplified sample stacking capillary electrophoresis with electrochemiluminescence applied to the determination of illicit drugs on banknotes. Journal of Chromatography A, 2006, 1115, 260-266.	3.7	67
56	A Valenceâ€Engineered Selfâ€Cascading Antioxidant Nanozyme for the Therapy of Inflammatory Bowel Disease. Angewandte Chemie - International Edition, 2022, 61, .	13.8	63
57	Nanozymes: Next Wave of Artificial Enzymes. Springer Briefs in Molecular Science, 2016, , .	0.1	62
58	Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening. Nature Communications, 2021, 12, 6866.	12.8	62
59	Strategies to Increase On-Target and Reduce Off-Target Effects of the CRISPR/Cas9 System in Plants. International Journal of Molecular Sciences, 2019, 20, 3719.	4.1	61
60	Light-responsive nanozymes for biosensing. Analyst, The, 2020, 145, 4388-4397.	3.5	61
61	Room temperature ionic liquid doped DNA network immobilized horseradish peroxidase biosensor for amperometric determination of hydrogen peroxide. Analytical and Bioanalytical Chemistry, 2007, 389, 527-532.	3.7	60
62	Phosphate-responsive 2D-metal–organic-framework-nanozymes for colorimetric detection of alkaline phosphatase. Journal of Materials Chemistry B, 2020, 8, 6905-6911.	5.8	60
63	Design of high performance nanozymes: a single-atom strategy. Science China Life Sciences, 2019, 62, 710-712.	4.9	58
64	[Ru(bpy) ₃] ²⁺ â€Doped Silica Nanoparticles within Layerâ€by‣ayer Biomolecular Coatings and Their Application as a Biocompatible Electrochemiluminescent Tag Material. Chemistry - A European Journal, 2008, 14, 3687-3693.	3.3	55
65	Deciphering the quenching mechanism of 2D MnO ₂ nanosheets towards Au nanocluster fluorescence to design effective glutathione biosensors. Analytical Methods, 2016, 8, 3935-3940.	2.7	54
66	Cerium oxide nanoparticles loaded nanofibrous membranes promote bone regeneration for periodontal tissue engineering. Bioactive Materials, 2022, 7, 242-253.	15.6	54
67	Catalysis of Gold Nanoparticles within Lysozyme Single Crystals. Chemistry - an Asian Journal, 2012, 7, 680-683.	3.3	52
68	Self-Cascade Uricase/Catalase Mimics Alleviate Acute Gout. Nano Letters, 2022, 22, 508-516.	9.1	52
69	Selective glucose detection based on the concept of electrochemical depletion of electroactive species in diffusion layer. Biosensors and Bioelectronics, 2005, 20, 1366-1372.	10.1	49
70	[Ru(bpy) ₂ (dcbpy)NHS] Labeling/Aptamerâ€Based Biosensor for the Detection of Lysozyme by Increasing Sensitivity with Gold Nanoparticle Amplification. Chemistry - an Asian Journal, 2008, 3, 1935-1941.	3.3	48
71	Protein―and Peptideâ€directed Approaches to Fluorescent Metal Nanoclusters. Israel Journal of Chemistry, 2015, 55, 682-697.	2.3	47
72	Cerium oxide nanozyme attenuates periodontal bone destruction by inhibiting the ROS–NFκB pathway. Nanoscale, 2022, 14, 2628-2637.	5.6	46

#	Article	IF	CITATIONS
73	Multifunctional STINGâ€Activating Mn ₃ O ₄ @Auâ€dsDNA/DOX Nanoparticle for Antitumor Immunotherapy. Advanced Healthcare Materials, 2020, 9, e2000064.	7.6	45
74	Enhanced electrochemiluminescence sensor from tris(2,2â€2-bipyridyl)ruthenium(ii) incorporated into MCM-41 and an ionic liquid-based carbon paste electrode. Analyst, The, 2007, 132, 687-691.	3.5	44
75	Nucleobase-mediated synthesis of nitrogen-doped carbon nanozymes as efficient peroxidase mimics. Dalton Transactions, 2019, 48, 1993-1999.	3.3	44
76	Surface Engineering of Biodegradable Magnesium Alloys for Enhanced Orthopedic Implants. Small, 2019, 15, e1904486.	10.0	43
77	Silver nanoparticles coated with adenine: preparation, self-assembly and application in surface-enhanced Raman scattering. Nanotechnology, 2007, 18, 175610.	2.6	39
78	Combining chemical reduction with an electrochemical technique for the simultaneous detection of Cr(<scp>vi</scp>), Pb(<scp>ii</scp>) and Cd(<scp>ii</scp>). Analyst, The, 2009, 134, 273-277.	3.5	38
79	Colorimetric recognition of the coralyne–poly(dA) interaction using unmodified gold nanoparticle probes, and further detection of coralyne based upon this recognition system. Analyst, The, 2009, 134, 1647.	3.5	38
80	Ruthenium Polypyridine Complexes Combined with Oligonucleotides for Bioanalysis: A Review. Molecules, 2014, 19, 11933-11987.	3.8	38
81	Engineering Nanoceria for Enhanced Peroxidase Mimics: A Solid Solution Strategy. ChemCatChem, 2019, 11, 737-743.	3.7	38
82	Quantitative electrochemiluminescence detection of proteins: Avidin-based sensor and tris(2,2′-bipyridine) ruthenium(II) label. Biosensors and Bioelectronics, 2008, 23, 1645-1651.	10.1	37
83	Protein-directed approaches to functional nanomaterials: a case study of lysozyme. Journal of Materials Chemistry B, 2014, 2, 8268-8291.	5.8	37
84	<i>In vitro</i> measurement of superoxide dismutase-like nanozyme activity: a comparative study. Analyst, The, 2021, 146, 1872-1879.	3.5	37
85	<i>In Situ</i> Exsolution of Noble-Metal Nanoparticles on Perovskites as Enhanced Peroxidase Mimics for Bioanalysis. Analytical Chemistry, 2021, 93, 5954-5962.	6.5	36
86	Gold alloy-based nanozyme sensor arrays for biothiol detection. Analyst, The, 2020, 145, 3916-3921.	3.5	35
87	Degradable ZnS-Supported Bioorthogonal Nanozymes with Enhanced Catalytic Activity for Intracellular Activation of Therapeutics. Journal of the American Chemical Society, 2022, 144, 12893-12900.	13.7	34
88	Electrochemical and electrochemiluminescence study of Ru(bpy)2+3-doped silica nanoparticles with covalently grafted biomacromolecules. Journal of Colloid and Interface Science, 2008, 321, 310-314.	9.4	33
89	Identification, evolution, expression, and docking studies of fatty acid desaturase genes in wheat (Triticum aestivum L.). BMC Genomics, 2020, 21, 778.	2.8	31
90	Mn ₃ O ₄ Nanozyme for Inflammatory Bowel Disease Therapy. Advanced Therapeutics, 2021, 4, 2100081.	3.2	31

#	Article	IF	CITATIONS
91	Evaluation, characterization, expression profiling, and functional analysis of DXS and DXR genes of Populus trichocarpa. Plant Physiology and Biochemistry, 2019, 142, 94-105.	5.8	30
92	Synthesis-temperature-regulated multi-enzyme-mimicking activities of ceria nanozymes. Journal of Materials Chemistry B, 2021, 9, 7238-7245.	5.8	29
93	An arylboronate locked fluorescent probe for hypochlorite. Analyst, The, 2017, 142, 2104-2108.	3.5	28
94	Spinel-Oxide-Based Laccase Mimics for the Identification and Differentiation of Phenolic Pollutants. Analytical Chemistry, 2022, 94, 10198-10205.	6.5	28
95	Electrochemiluminescence-based DNA Detection Using Guanine Oxidation at Electrostatic Self-assembly of Ru(bpy)32+-doped Silica Nanoparticles on Indium Tin Oxide Electrode. Chemistry Letters, 2007, 36, 210-211.	1.3	27
96	Fe ₃ O ₄ @GO magnetic nanocomposites protect mesenchymal stem cells and promote osteogenic differentiation of rat bone marrow mesenchymal stem cells. Biomaterials Science, 2020, 8, 5984-5993.	5.4	27
97	Structurally Engineered Light-Responsive Nanozymes for Enhanced Substrate Specificity. Analytical Chemistry, 2021, 93, 15150-15158.	6.5	27
98	Bis(2,2′-bipyridine)(5,6-epoxy-5,6-dihydro-[1,10] phenanthroline)ruthenium: Synthesis and Electrochemical and Electrochemiluminescence Characterization. Analytical Chemistry, 2008, 80, 5635-5639.	6.5	26
99	Characterization and Function of 3-Hydroxy-3-Methylglutaryl-CoA Reductase in Populus trichocarpa: Overexpression of PtHMGR Enhances Terpenoids in Transgenic Poplar. Frontiers in Plant Science, 2019, 10, 1476.	3.6	25
100	Enhanced and tunable fluorescent quantum dots within a single crystal of protein. Nano Research, 2013, 6, 627-634.	10.4	24
101	Functional Nucleic Acid Probe for Parallel Monitoring K ⁺ and Protoporphyrin IX in Living Organisms. Analytical Chemistry, 2016, 88, 2937-2943.	6.5	24
102	Modulating luminescence of Tb3+ with biomolecules for sensing heparin and its contaminant OSCS. Biosensors and Bioelectronics, 2016, 86, 858-863.	10.1	22
103	Ligandâ€Dependent Activity Engineering of Glutathione Peroxidaseâ€Mimicking MILâ€47(V) Metal–Organic Framework Nanozyme for Therapy. Angewandte Chemie, 2021, 133, 1247-1254.	2.0	21
104	A Dopamine-Enabled Universal Assay for Catalase and Catalase-Like Nanozymes. Analytical Chemistry, 2022, 94, 10636-10642.	6.5	21
105	Enzymatically activated reduction-caged SERS reporters for versatile bioassays. Analyst, The, 2017, 142, 2322-2326.	3.5	20
106	Overexpression of PtDXS Enhances Stress Resistance in Poplars. International Journal of Molecular Sciences, 2019, 20, 1669.	4.1	20
107	Expression and characterization of the antimicrobial peptide ABP-dHC-cecropin A in the methylotrophic yeast Pichia pastoris. Protein Expression and Purification, 2017, 140, 44-51.	1.3	19
108	A pH responsive AIE probe for enzyme assays. Analyst, The, 2018, 143, 741-746.	3.5	19

#	Article	IF	CITATIONS
109	Plant Secondary Metabolites with an Overview of Populus. International Journal of Molecular Sciences, 2021, 22, 6890.	4.1	19
110	Multifunctional Nanozyme Hydrogel with Mucosal Healing Activity for Single-Dose Ulcerative Colitis Therapy. Bioconjugate Chemistry, 2022, 33, 248-259.	3.6	18
111	Electrochemiluminescence in the S2O82- system: Pt–Cd electrodes. Electrochemistry Communications, 2007, 9, 465-468.	4.7	17
112	Ceriumâ€Based Metal–Organic Framework with Intrinsic Haloperoxidaseâ€Like Activity for Antibiofilm Formation. Advanced Functional Materials, 2022, 32, .	14.9	17
113	Submicrometre scale single-crystalline gold plates of nanometre thickness: synthesis through a nucleobase process and growth mechanism. Nanotechnology, 2007, 18, 295603.	2.6	16
114	Using a Hemeâ€Based Nanozyme as Bifunctional Redox Mediator for Liâ^'O ₂ Batteries. Batteries and Supercaps, 2020, 3, 336-340.	4.7	16
115	Biocompatible hyaluronic acid polymer-coated quantum dots for CD44+ cancer cell-targeted imaging. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	15
116	Acid Susceptible Ultrathin Mesoporous Silica Coated on Layered Double Hydroxide Nanoplates for pH Responsive Cancer Therapy. ACS Applied Bio Materials, 2018, 1, 928-935.	4.6	15
117	Peroxidase-like nanozyme sensing arrays for versatile analytes. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	15
118	Porous Ruthenium Selenide Nanoparticle as a Peroxidase Mimic for Glucose Bioassay. Journal of Analysis and Testing, 2019, 3, 253-259.	5.1	14
119	Kinetic study of paracetamol on prolidase activity in erythrocytes by capillary electrophoresis with Ru(bpy)32+ electrochemiluminescence detection. Electrophoresis, 2006, 27, 4047-4051.	2.4	13
120	Functional analyses of PtRDM1 gene overexpression in poplars and evaluation of its effect on DNA methylation and response to salt stress. Plant Physiology and Biochemistry, 2018, 127, 64-73.	5.8	13
121	Combining Photothermal Therapyâ€Induced Immunogenic Cell Death and Hypoxia Reliefâ€Benefited M1â€Phenotype Macrophage Polarization for Cancer Immunotherapy. Advanced Therapeutics, 2021, 4, 2000191.	3.2	12
122	Recent Advances on Nanozymeâ€based Electrochemical Biosensors. Electroanalysis, 2023, 35, .	2.9	12
123	Selective, peroxidase substrate based "signal-on―colorimetric assay for the detection of chromium (VI). Analytica Chimica Acta, 2008, 630, 181-185.	5.4	11
124	High-level SUMO-mediated fusion expression of ABP-dHC-cecropin A from multiple joined genes in Escherichia coli. Analytical Biochemistry, 2016, 509, 15-23.	2.4	11
125	A supercharged fluorescent protein based FRET sensing platform for detection of heparin contamination. Analytical Methods, 2017, 9, 5593-5597.	2.7	11
126	Guided Synthesis of a Mo/Zn Dual Singleâ€Atom Nanozyme with Synergistic Effect and Peroxidaseâ€like Activity. Angewandte Chemie, 2022, 134, .	2.0	11

#	Article	IF	CITATIONS
127	Tris(2,2′-bipyridyl) Ruthenium(II) Doped Silica Film Modified Indium Tin Oxide Electrode and Its Electrochemiluminescent Properties. Chinese Journal of Chemistry, 2007, 25, 159-163.	4.9	10
128	Overexpression of PtDefensin enhances resistance to Septotis populiperda in transgenic poplar. Plant Science, 2020, 292, 110379.	3.6	10
129	High-Throughput Colorimetric Analysis of Nanoparticle–Protein Interactions Based on the Enzyme-Mimic Properties of Nanoparticles. Analytical Chemistry, 2022, 94, 8783-8791.	6.5	10
130	Characterization, expression profiling, and functional analysis of a Populus trichocarpa defensin gene and its potential as an anti-Agrobacterium rooting medium additive. Scientific Reports, 2019, 9, 15359.	3.3	9
131	Genome-Wide Characterization of Dirigent Proteins in Populus: Gene Expression Variation and Expression Pattern in Response to Marssonina brunnea and Phytohormones. Forests, 2021, 12, 507.	2.1	9
132	Nanozymes: Preparation and Characterization. Nanostructure Science and Technology, 2020, , 79-101.	0.1	9
133	Identification and Characterization of an OSH1 Thiol Reductase from Populus trichocarpa. Cells, 2020, 9, 76.	4.1	8
134	The Measurements and Simulations of Millimeter Wave Propagation at 38ghz in Circular Subway Tunnels. , 2008, , .		7
135	Metal Oxide-Based Nanomaterials for Nanozymes. Springer Briefs in Molecular Science, 2016, , 57-91.	0.1	7
136	Current developments and trends in nanobiocatalysis. Scientia Sinica Vitae, 2020, 50, 682-697.	0.3	7
137	A Valenceâ€Engineered Selfâ€Cascading Antioxidant Nanozyme for the Therapy of Inflammatory Bowel Disease. Angewandte Chemie, 2022, 134, .	2.0	7
138	Biochar Nanozyme from Silkworm Excrement for Scavenging Vapor-Phase Free Radicals in Cigarette Smoke. ACS Applied Bio Materials, 2022, 5, 1831-1838.	4.6	6
139	Challenges and Perspectives. Springer Briefs in Molecular Science, 2016, , 103-107.	0.1	5
140	Optimization of the cry1Ah1 Sequence Enhances the Hyper-Resistance of Transgenic Poplars to Hyphantria cunea. Frontiers in Plant Science, 2019, 10, 335.	3.6	5
141	Design of nanozymes for inflammatory bowel disease therapy. Science China Life Sciences, 2021, 64, 1368-1371.	4.9	5
142	Carbon-Based Nanomaterials for Nanozymes. Springer Briefs in Molecular Science, 2016, , 7-29.	0.1	4
143	Correction: A pH responsive AIE probe for enzyme assays. Analyst, The, 2018, 143, 784-784.	3.5	4
144	Overexpression of PtAnnexin1 from Populus trichocarpa enhances salt and drought tolerance in transgenic poplars. Tree Genetics and Genomes, 2020, 16, 1.	1.6	4

Ηυι Wει

#	Article	IF	CITATIONS
145	Introduction to Nanozymes. Springer Briefs in Molecular Science, 2016, , 1-6.	0.1	3
146	Metal-Based Nanomaterials for Nanozymes. Springer Briefs in Molecular Science, 2016, , 31-55.	0.1	3
147	Nanozymes for Biomedical Sensing Applications. , 2018, , 171-209.		3
148	Effects of Bt-Cry1Ah1 Transgenic Poplar on Target and Non-Target Pests and Their Parasitic Natural Enemy in Field and Laboratory Trials. Forests, 2020, 11, 1255.	2.1	3
149	Characteristics and Functions of PePIF3, a Gene Related to Circadian Rhythm in "Nanlin 895―Poplar. Plant Molecular Biology Reporter, 2020, 38, 586-600.	1.8	3
150	Inorganic Enzyme Mimics. ChemBioChem, 2021, 22, 1496-1498.	2.6	3
151	Genome-Wide and Comprehensive Analysis of the Multiple Stress-Related CAF1 (CCR4-Associated Factor) Tj ETQc	110.784 3.5	1314 rgBT /(
152	A Method to Reduce off-Targets in CRISPR/Cas9 System in Plants. Methods in Molecular Biology, 2022, 2408, 317-324.	0.9	2
153	Strategy for Use of Smart Routes to Prepare Label-Free Aptasensors for Bioassay Using Different Techniques. , 0, , 251-298.		1
154	Other Nanomaterials for Nanozymes. Springer Briefs in Molecular Science, 2016, , 93-102.	0.1	0
155	Nanozymes for Therapeutics. Nanostructure Science and Technology, 2020, , 459-488.	0.1	0
156	Innenrücktitelbild: Ligandâ€Dependent Activity Engineering of Glutathione Peroxidaseâ€Mimicking MILâ€47(V) Metal–Organic Framework Nanozyme for Therapy (Angew. Chem. 3/2021). Angewandte Chemie, 2021, 133, 1683-1683.	2.0	0
157	Beyond: Novel Applications of Nanozymes. Nanostructure Science and Technology, 2020, , 545-555.	0.1	0