Giancarlo Bellucci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7596718/publications.pdf

Version: 2024-02-01

158 papers 9,765 citations

45 h-index 97 g-index

177 all docs

177 docs citations

177 times ranked

5200 citing authors

#	Article	IF	CITATIONS
1	Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data. Science, 2006, 312, 400-404.	12.6	1,395
2	Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations. Science, 2005, 307, 1576-1581.	12.6	842
3	Phyllosilicates on Mars and implications for early martian climate. Nature, 2005, 438, 623-627.	27.8	825
4	The Cassini Visual And Infrared Mapping Spectrometer (Vims) Investigation. Space Science Reviews, 2004, 115, 111-168.	8.1	369
5	Olivine and Pyroxene Diversity in the Crust of Mars. Science, 2005, 307, 1594-1597.	12.6	348
6	The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta. Science, 2015, 347, aaa0628.	12.6	293
7	Perennial water ice identified in the south polar cap of Mars. Nature, 2004, 428, 627-630.	27.8	279
8	A chemical survey of exoplanets with ARIEL. Experimental Astronomy, 2018, 46, 135-209.	3.7	249
9	Release of volatiles from a possible cryovolcano from near-infrared imaging of Titan. Nature, 2005, 435, 786-789.	27.8	208
10	Composition and Physical Properties of Enceladus' Surface. Science, 2006, 311, 1425-1428.	12.6	199
11	Martian surface mineralogy from Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps. Journal of Geophysical Research, 2007, 112, .	3.3	191
12	Virtis: An Imaging Spectrometer for the Rosetta Mission. Space Science Reviews, 2007, 128, 529-559.	8.1	181
13	Spectral Reflectance and Morphologic Correlations in Eastern Terra Meridiani, Mars. Science, 2005, 307, 1591-1594.	12.6	160
14	Compositional maps of Saturn's moon Phoebe from imaging spectroscopy. Nature, 2005, 435, 66-69.	27.8	155
15	Scientific goals for the observation of Venus by VIRTIS on ESA/Venus express mission. Planetary and Space Science, 2007, 55, 1653-1672.	1.7	155
16	Nature and origin of the hematite-bearing plains of Terra Meridiani based on analyses of orbital and Mars Exploration rover data sets. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	144
17	The Evolution of Titan's Mid-Latitude Clouds. Science, 2005, 310, 474-477.	12.6	139
18	Global maps of anhydrous minerals at the surface of Mars from OMEGA/MEx. Journal of Geophysical Research, 2012, 117, .	3.3	133

#	Article	IF	CITATIONS
19	No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature, 2019, 568, 517-520.	27.8	111
20	South-polar features on Venus similar to those near the north pole. Nature, 2007, 450, 637-640.	27.8	110
21	The Surface Composition and Temperature of Asteroid 21 Lutetia As Observed by Rosetta/VIRTIS. Science, 2011, 334, 492-494.	12.6	110
22	Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature, 2019, 568, 521-525.	27.8	107
23	ASPI experiment: measurements of fields and waves on board the INTERBALL-1 spacecraft. Annales Geophysicae, 1997, 15, 514-527.	1.6	104
24	Exposed water ice on the nucleus of comet 67P/Churyumov–Gerasimenko. Nature, 2016, 529, 368-372.	27.8	104
25	A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express. Nature, 2007, 450, 641-645.	27.8	95
26	NOMAD, an Integrated Suite of Three Spectrometers for the ExoMars Trace Gas Mission: Technical Description, Science Objectives and Expected Performance. Space Science Reviews, 2018, 214, 1.	8.1	95
27	Cassini Visual and Infrared Mapping Spectrometer Observations of Iapetus: Detection of CO 2. Astrophysical Journal, 2005, 622, L149-L152.	4.5	94
28	Water Vapor Vertical Profiles on Mars in Dust Storms Observed by TGO/NOMAD. Journal of Geophysical Research E: Planets, 2019, 124, 3482-3497.	3.6	88
29	Hydrocarbons on Saturn's satellites lapetus and Phoebe. Icarus, 2008, 193, 334-343.	2.5	86
30	A 5-Micron-Bright Spot on Titan: Evidence for Surface Diversity. Science, 2005, 310, 92-95.	12.6	78
31	Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission. Planetary and Space Science, 2015, 119, 233-249.	1.7	77
32	Virtis: an imaging spectrometer for the rosetta mission. Planetary and Space Science, 1998, 46, 1291-1304.	1.7	72
33	Photometric properties of comet 67P/Churyumov-Gerasimenko from VIRTIS-M onboard Rosetta. Astronomy and Astrophysics, 2015, 583, A31.	5.1	71
34	Saturn's Titan: Surface change, ammonia, and implications for atmospheric and tectonic activity. lcarus, 2009, 199, 429-441.	2.5	69
35	Distribution of icy particles across Enceladus' surface as derived from Cassini-VIMS measurements. Icarus, 2008, 193, 407-419.	2.5	64
36	Detection of Sub-Micron Radiation from the Surface of Venus by Cassini/VIMS. Icarus, 2000, 148, 307-311.	2.5	62

#	Article	IF	CITATIONS
37	Saturn's icy satellites investigated by Cassini-VIMS. Icarus, 2007, 186, 259-290.	2.5	62
38	Cassini VIMS observations of the Galilean satellites including the VIMS calibration procedure. Icarus, 2004, 172, 104-126.	2.5	61
39	Seasonal exposure of carbon dioxide ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Science, 2016, 354, 1563-1566.	12.6	61
40	South Pole of Mars: Nature and composition of the icy terrains from Mars Express OMEGA observations. Planetary and Space Science, 2007, 55, 113-133.	1.7	60
41	NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 1â€"design, manufacturing and testing of the infrared channels. Applied Optics, 2015, 54, 8494.	2.1	58
42	Observations in the Saturn system during approach and orbital insertion, with Cassini's visual and infrared mapping spectrometer (VIMS). Astronomy and Astrophysics, 2006, 446, 707-716.	5.1	57
43	THE ATMOSPHERES OF SATURN AND TITAN IN THE NEAR-INFRARED: FIRST RESULTS OF CASSINI/VIMS. Earth, Moon and Planets, 2006, 96, 119-147.	0.6	57
44	Surface composition of Hyperion. Nature, 2007, 448, 54-56.	27.8	56
45	Observations with the Visual and Infrared Mapping Spectrometer (VIMS) during Cassini's flyby of Jupiter. Icarus, 2003, 164, 461-470.	2.5	48
46	Infrared detection of aliphatic organics on a cometary nucleus. Nature Astronomy, 2020, 4, 500-505.	10.1	41
47	NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 2â€"design, manufacturing, and testing of the ultraviolet and visible channel. Applied Optics, 2017, 56, 2771.	2.1	40
48	Martian water loss to space enhanced by regional dust storms. Nature Astronomy, 2021, 5, 1036-1042.	10.1	40
49	The planetary fourier spectrometer (PFS) onboard the European Venus Express mission. Planetary and Space Science, 2006, 54, 1298-1314.	1.7	39
50	Mapping of water frost and ice at low latitudes on Mars. Icarus, 2009, 203, 406-420.	2.5	39
51	Strong Variability of Martian Water Ice Clouds During Dust Storms Revealed From ExoMars Trace Gas Orbiter/NOMAD. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006250.	3.6	39
52	Photometric changes on Saturn's Titan: Evidence for active cryovolcanism. Geophysical Research Letters, 2009, 36, .	4.0	38
53	Transient HCl in the atmosphere of Mars. Science Advances, 2021, 7, .	10.3	37
54	The changing temperature of the nucleus of comet 67P induced by morphological and seasonal effects. Nature Astronomy, 2019, 3, 649-658.	10.1	34

#	Article	IF	CITATIONS
55	A systematic mapping procedure based on the Modified Gaussian Model to characterize magmatic units from olivine/pyroxenes mixtures: Application to the Syrtis Major volcanic shield on Mars. Journal of Geophysical Research E: Planets, 2013, 118, 1632-1655.	3.6	33
56	Identification of spectral units on Phoebe. Icarus, 2008, 193, 233-251.	2.5	32
57	Methane on Mars: New insights into the sensitivity of CH4 with the NOMAD/ExoMars spectrometer through its first in-flight calibration. Icarus, 2019, 321, 671-690.	2.5	32
58	The EChO science case. Experimental Astronomy, 2015, 40, 329-391.	3.7	31
59	Expected performances of the NOMAD/ExoMars instrument. Planetary and Space Science, 2016, 124, 94-104.	1.7	31
60	Water heavily fractionated as it ascends on Mars as revealed by ExoMars/NOMAD. Science Advances, 2021, 7, .	10.3	31
61	Coordinated analyses of orbital and Spirit Rover data to characterize surface materials on the cratered plains of Gusev Crater, Mars. Journal of Geophysical Research, 2007, 112, .	3.3	29
62	OMEGA/Mars Express: Visual channel performances and data reduction techniques. Planetary and Space Science, 2006, 54, 675-684.	1.7	28
63	VIMS spectral mapping observations of Titan during the Cassini prime mission. Planetary and Space Science, 2009, 57, 1950-1962.	1.7	28
64	Comprehensive investigation of Mars methane and organics with ExoMars/NOMAD. Icarus, 2021, 357, 114266.	2.5	27
65	Optical and radiometric models of the NOMAD instrument part I: the UVIS channel. Optics Express, 2015, 23, 30028.	3.4	26
66	Optical and radiometric models of the NOMAD instrument part II: the infrared channels - SO and LNO. Optics Express, 2016, 24, 3790.	3.4	25
67	High-resolution CASSINI-VIMS mosaics of Titan and the icy Saturnian satellites. Planetary and Space Science, 2006, 54, 1146-1155.	1.7	24
68	Mars Express High Resolution Stereo Camera spectrophotometric data: Characteristics and science analysis. Journal of Geophysical Research, 2007, 112, .	3.3	23
69	Saturn's icy satellites investigated by Cassini-VIMS. IV. Daytime temperature maps. Icarus, 2016, 271, 292-313.	2.5	23
70	Geology and mineralogy of the Auki Crater, Tyrrhena Terra, Mars: A possible post impact-induced hydrothermal system. Icarus, 2017, 281, 228-239.	2.5	23
71	O2 1.27μm emission maps as derived from OMEGA/MEx data. Icarus, 2009, 204, 499-511.	2.5	21
72	Gravity waves mapped by the OMEGA/MEX instrument through O ₂ dayglow at 1.27 <i>1½</i> m: Data analysis and atmospheric modeling. Journal of Geophysical Research, 2012, 117, .	3.3	21

#	Article	IF	CITATIONS
73	The DREAMS Experiment Onboard the Schiaparelli Module of the ExoMars 2016 Mission: Design, Performances and Expected Results. Space Science Reviews, 2018, 214, 1.	8.1	19
74	Dust haze in Valles Marineris observed by HRSC and OMEGA on board Mars Express. Journal of Geophysical Research, 2008, 113 , .	3.3	18
75	ExoMars TGO/NOMADâ€UVIS Vertical Profiles of Ozone: 1. Seasonal Variation and Comparison to Water. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006837.	3.6	18
76	<title>VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission</title> ., 1996,,.		17
77	Low-altitude energetic neutral atoms imaging of the inner magnetosphere: A geometrical method to identify the energetic neutral atoms contributions from different magnetospheric regions. Journal of Geophysical Research, 1996, 101, 27123-27131.	3.3	15
78	Infrared spectrometer PFS for the Mars 94 orbiter. Advances in Space Research, 1996, 17, 61-64.	2.6	15
79	Modeling VIRTIS/VEX O ₂ (<i>a</i> 1 \hat{a}^{+} <i>g</i>) nightglow profiles affected by the propagation of gravity waves in the Venus upper mesosphere. Journal of Geophysical Research E: Planets, 2014, 119, 2300-2316.	3.6	15
80	Annual Appearance of Hydrogen Chloride on Mars and a Striking Similarity With the Water Vapor Vertical Distribution Observed by TGO/NOMAD. Geophysical Research Letters, 2021, 48, e2021GL092506.	4.0	15
81	The Deuterium Isotopic Ratio of Water Released From the Martian Caps as Measured With TGO/NOMAD. Geophysical Research Letters, 2022, 49, .	4.0	15
82	ExoMars TGO/NOMADâ€UVIS Vertical Profiles of Ozone: 2. The Highâ€Altitude Layers of Atmospheric Ozone. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006834.	3.6	14
83	Photometric properties of Titan's surface from Cassini VIMS: Relevance to titan's hemispherical albedo dichotomy and surface stability. Planetary and Space Science, 2006, 54, 1540-1551.	1.7	13
84	Iron mineralogy of the surface of Mars from the $1 < i > \hat{l} \frac{1}{4} < i> m$ band spectral properties. Journal of Geophysical Research, 2012, 117, .	3.3	13
85	The DREAMS experiment on the ExoMars 2016 mission for the study of Martian environment during the dust storm season. , 2014, , .		13
86	Removal of atmospheric features in near infrared spectra by means of principal component analysis and target transformation on Mars: I. Method. Icarus, 2015, 253, 51-65.	2.5	13
87	Detection of green line emission in the dayside atmosphere of Mars from NOMAD-TGO observations. Nature Astronomy, 2020, 4, 1049-1052.	10.1	13
88	First Detection and Thermal Characterization of Terminator CO ₂ Ice Clouds With ExoMars/NOMAD. Geophysical Research Letters, 2021, 48, .	4.0	12
89	AOST: Fourier spectrometer for studying mars and phobos. Solar System Research, 2012, 46, 31-40.	0.7	11
90	The climatology of carbon monoxide on Mars as observed by NOMAD nadir-geometry observations. lcarus, 2021, 362, 114404.	2.5	11

#	Article	IF	Citations
91	INTERBALL magnetotail boundary case studies. Advances in Space Research, 1997, 20, 999-1015.	2.6	10
92	Cassini/VIMS observation of an lo post-eclipse brightening event. Icarus, 2004, 172, 141-148.	2.5	10
93	Results of measurements with the Planetary Fourier Spectrometer onboard Mars Express: Clouds and dust at the end of southern summer. A comparison with OMEGA images. Cosmic Research, 2006, 44, 305-316.	0.6	10
94	Martian atmosphere as observed by VIRTISâ€M on Rosetta spacecraft. Journal of Geophysical Research, 2010, 115, .	3.3	10
95	MicroMIMA FTS: design of spectrometer for Mars atmosphere investigation. Proceedings of SPIE, 2013, ,	0.8	10
96	Imaging spectroscopy of selected regional dark mantle deposits of the Moon. Planetary and Space Science, 2001, 49, 487-500.	1.7	9
97	Oxygen airglow emission on Venus and Mars as seen by VIRTIS/VEX and OMEGA/MEX imaging spectrometers. Planetary and Space Science, 2011, 59, 981-987.	1.7	9
98	The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season. Measurement: Journal of the International Measurement Confederation, 2018, 122, 484-493.	5.0	9
99	Retrieval of the water ice column and physical properties of water-ice clouds in the martian atmosphere using the OMEGA imaging spectrometer. Icarus, 2021, 353, 113229.	2.5	8
100	First Observation of the Oxygen 630Ânm Emission in the Martian Dayglow. Geophysical Research Letters, 2021, 48, e2020GL092334.	4.0	8
101	A Global and Seasonal Perspective of Martian Water Vapor From ExoMars/NOMAD. Journal of Geophysical Research E: Planets, 2021, 126, .	3.6	8
102	Calibration of NOMAD on ESA's ExoMars Trace Gas Orbiter: Part 1 \hat{a} The Solar Occultation channel. Planetary and Space Science, 2022, 218, 105411.	1.7	8
103	Visible and infrared mapping spectrometer for exploration of comets, asteroids, and the saturnian system of rings and moons. International Journal of Imaging Systems and Technology, 1991, 3, 108-120.	4.1	7
104	Spectroscopy Of Comet Hale-Bopp In The Visible/Near Infrared: Modeling Of Dust Properties. Earth, Moon and Planets, 1997, 78, 305-311.	0.6	7
105	Imaging spectroscopy of the moon: data reduction-analysis techniques and compositional variability of the Mare Serenitatis-Tranquillitatis region. Planetary and Space Science, 1998, 46, 377-390.	1.7	7
106	Cassini-VIMS at Jupiter: solar occultation measurements using lo. lcarus, 2003, 166, 75-84.	2.5	7
107	Evidence for enhanced hydration on the northern flank of Olympus Mons, Mars. Icarus, 2007, 192, 361-377.	2.5	7
108	Eclipse reappearances of Io: Time-resolved spectroscopy (1.9–4.2μm). Icarus, 2010, 205, 516-527.	2.5	7

#	Article	IF	CITATIONS
109	Properties of a Martian local dust storm in Atlantis Chaos from OMEGA/MEX data. Icarus, 2018, 300, 1-11.	2.5	7
110	Probing the Atmospheric Cl Isotopic Ratio on Mars: Implications for Planetary Evolution and Atmospheric Chemistry. Geophysical Research Letters, 2021, 48, e2021GL092650.	4.0	7
111	Variations in Vertical CO/CO ₂ Profiles in the Martian Mesosphere and Lower Thermosphere Measured by the ExoMars TGO/NOMAD: Implications of Variations in Eddy Diffusion Coefficient. Geophysical Research Letters, 2022, 49, .	4.0	7
112	Planetâ€Wide Ozone Destruction in the Middle Atmosphere on Mars During Global Dust Storm. Geophysical Research Letters, 2022, 49, .	4.0	7
113	The Cassini Visual and Infrared Mapping Spectrometer (VIMS) Investigation. , 2004, , 111-168.		6
114	MIMA, a miniaturized infrared spectrometer for Mars ground exploration: Part III. Thermomechanical design., 2007,,.		6
115	The spectrum of a Saturn ring spoke from Cassini/VIMS. Geophysical Research Letters, 2010, 37, .	4.0	6
116	Vertical distribution of dust in the martian atmosphere: OMEGA/MEx limb observations. Icarus, 2022, 371, 114702.	2.5	6
117	Vertical Aerosol Distribution and Mesospheric Clouds From ExoMars UVIS. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	6
118	Density and Temperature of the Upper Mesosphere and Lower Thermosphere of Mars Retrieved From the OI 557.7Ânm Dayglow Measured by TGO/NOMAD. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	6
119	MARS-IRMA: in-situ infrared microscope analysis of Martian soil and rock samples Advances in Space Research, 2001, 28, 1219-1224.	2.6	5
120	MIMA, a miniaturized Fourier infrared spectrometer for Mars ground exploration: Part I. Concept and expected performance., 2007,,.		5
121	Martian CO ₂ Ice Observation at High Spectral Resolution With ExoMars/TGO NOMAD. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	5
122	Calibration of the NOMAD-UVIS data. Planetary and Space Science, 2022, 218, 105504.	1.7	5
123	Planetary Fourier spectrometer: An interferometer for atmospheric studies on board Mars 94 mission. Il Nuovo Cimento Della SocietÀ Italiana Di Fisica C, 1993, 16, 575-588.	0.2	4
124	Regional mapping of planetary surfaces with imaging spectroscopy. Planetary and Space Science, 1997, 45, 1371-1381.	1.7	4
125	Principal components analysis of Jupiter VIMS spectra. Advances in Space Research, 2004, 34, 1640-1646.	2.6	4
126	MIMA, a miniaturized Fourier spectrometer for Mars ground exploration: Part II. Optical design. Proceedings of SPIE, 2007, , .	0.8	4

#	Article	IF	CITATIONS
127	Calibration of NOMAD on ExoMars Trace Gas Orbiter: Part 3 - LNO validation and instrument stability. Planetary and Space Science, 2022, 218, 105399.	1.7	4
128	TheVNIR-VIMS experiment for Craf/Cassini. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1992, 15, 1179-1192.	0.2	3
129	VIRTIS: An Imaging Spectrometer for the ROSETTA Mission. , 2009, , 563-585.		3
130	Removal of straylight from ExoMars NOMAD-UVIS observations. Planetary and Space Science, 2022, 218, 105432.	1.7	3
131	Calibration of NOMAD on ESA's ExoMars Trace Gas Orbiter: Part 2 – The Limb, Nadir and Occultation (LNO) channel. Planetary and Space Science, 2021, , 105410.	1.7	3
132	Jets physics in comet P/Halley. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1991, 14, 319-334.	0.2	2
133	Evaluation of aPbTe detector for infrared imaging purposes. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1992, 15, 1121-1128.	0.2	2
134	The Renazzo meteorite. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1993, 16, 775-781.	0.2	2
135	An imaging spectrometer operating in the visible near infrared for the study of planetary surfaces. Planetary and Space Science, 1998, 46, 1277-1290.	1.7	2
136	Mars: Mapping surface units by means of statistical analysis of TES spectra. Astronomy and Astrophysics, 2003, 402, 373-381.	5.1	2
137	MicroMIMA, a miniaturized spectrometer for planetary observation. , 2015, , .		2
138	Machine learning for automatic identification of new minor species. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 259, 107361.	2.3	2
139	VNIR: Visible/near-infrared spectrometer for the Mars 94 mission. , 1993, , .		2
140	The Mars Oxygen Visible Dayglow: A Martian Year of NOMAD/UVIS Observations. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	2
141	Imaging of comet Halley from Catania observatory using a CCD and Schmidt plates. Advances in Space Research, 1985, 5, 263-266.	2.6	1
142	An imaging spectrometer for planetary studies. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1993, 16, 589-595.	0.2	1
143	Imaging Earth's magnetosphere: Measuring energy, mass, and direction of energetic neutral atoms with the ISENA instrument. Geophysical Monograph Series, 1998, , 269-274.	0.1	1
144	The experiment OPERA for the mission Interball. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1990, 13, 155-161.	0.2	0

#	Article	IF	CITATIONS
145	Study of star extinction beyond comet P/Halley. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1990, 13, 223-230.	0.2	0
146	Multispectral imaging of Mars: ISM results. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1992, 15, 1113-1119.	0.2	0
147	Magnetohydrodynamic instabilities at Comet P/Halley: Giotto observations. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1992, 15, 665-673.	0.2	O
148	Imaging spectroscopy of the Moon: A study of the Aristarchus region. Advances in Space Research, 1997, 19, 1535-1538.	2.6	0
149	Spectral diversity and compositional implications of Montes Haemus and Serenitatis/Tranquillitatis region on the moon from imaging spectroscopy data. Planetary and Space Science, 1998, 46, 479-490.	1.7	0
150	Atmospheric studies with spectro-imaging: prospects for the vims experiment on Cassini. Planetary and Space Science, 1998, 46, 1305-1314.	1.7	0
151	$\mbox{\ensuremath{\mbox{\sc title}}}\mbox{\sc lmage}$ sharpening by means of spectral unmixing: comparison among different techniques $\mbox{\sc /title}\mbox{\sc .}$, 1998, , .		O
152	The international package for scientific experiments (IPSE) for Mars surveyor program. Advances in Space Research, 2001, 28, 1209-1218.	2.6	0
153	Cassini/VIMS observations of the moon. Advances in Space Research, 2002, 30, 1889-1894.	2.6	0
154	Iron mineralogy of the martian surface with OMEGA spectrometer. , 2014, , .		0
155	An improved version of the Visible and Near Infrared (VNIR) spectrometer of EChO. Proceedings of SPIE, 2014, , .	0.8	O
156	Preparing EChO space mission: laboratory simulation of planetary atmospheres. , 2014, , .		0
157	The visible and near infrared module of EChO. Experimental Astronomy, 2015, 40, 753-769.	3.7	0
158	Imaging spectroscopy of planetary surfaces: Improving the spatial contrast. Astronomy and Astrophysics, 1999, 134, 187-192.	2.1	O